ACM思维题训练集合

You are given two integers n and d. You need to construct a rooted binary tree consisting of n vertices with a root at the vertex 1 and the sum of depths of all vertices equals to d.

A tree is a connected graph without cycles. A rooted tree has a special vertex called the root. A parent of a vertex v is the last different from v vertex on the path from the root to the vertex v. The depth of the vertex v is the length of the path from the root to the vertex v. Children of vertex v are all vertices for which v is the parent. The binary tree is such a tree that no vertex has more than 2 children.

You have to answer t independent test cases.

Input

The first line of the input contains one integer t (1≤t≤1000) — the number of test cases.

The only line of each test case contains two integers n and d (2≤n,d≤5000) — the number of vertices in the tree and the required sum of depths of all vertices.

It is guaranteed that the sum of n and the sum of d both does not exceed 5000 (∑n≤5000,∑d≤5000).

Output

For each test case, print the answer.

If it is impossible to construct such a tree, print “NO” (without quotes) in the first line. Otherwise, print “{YES}” in the first line. Then print n−1 integers p2,p3,…,pn in the second line, where pi is the parent of the vertex i. Note that the sequence of parents you print should describe some binary tree.

Example

inputCopy

3

5 7

10 19

10 18

outputCopy

YES

1 2 1 3

YES

1 2 3 3 9 9 2 1 6

NO

Note

Pictures corresponding to the first and the second test cases of the example:



丫的,改了一天。

如果b在构造的树的深度最大(左偏或右偏树)和最小(满二叉树)之内就能构成,然后从左偏树开始不断的将低端的点向上移动,知道达到要求。

#include <bits/stdc++.h>
using namespace std;
int f[210];
inline void solve()
{
memset(f, 0, sizeof(f));
int n, d, maxd = 0;
scanf("%d %d", &n, &d);
--n;
if (d > n * (n + 1) / 2)
{
printf("NO\n");
return;
} //1
for (int i = 1;; ++i)
{
maxd = i;
if (n > (1 << i))
{
d -= i * (1 << i);
f[i] = 1 << i;
n -= 1 << i;
}
else
{
d -= i * n;
f[i] = n;
n -= n;
break;
}
}
if (d < 0)
{
printf("NO\n");
return;
}
while (1)
{
if (d == 0)
break;
int p;
for (p = maxd; p >= 1; --p)
if (f[p] > 1)
break;
--d;
--f[p];
++f[p + 1];
if (p + 1 > maxd)
maxd = p + 1;
}
printf("YES\n");
int p = 1, np = 1, cnt;
for (int i = 1; i <= maxd; ++i)
{
int t = p;
cnt = 0;
for (int j = 1; j <= f[i]; ++j)
{
++p;
++cnt;
if (cnt >= 3)
{
++np;
cnt = 1;
}
printf("%d ", np);
}
np = t + 1;
}
printf("\n");
}
int main()
{
int t;
scanf("%d", &t);
for (int i = 1; i <= t; ++i)
solve();
return 0;
}

codeforce 1311E. Construct the Binary Tree (构造,就是个模拟)的更多相关文章

  1. [CF1311E] Construct the Binary Tree - 构造

    Solution 预处理出 \(i\) 个点组成的二叉树的最大答案和最小答案 递归做,由于只需要构造一种方案,我们让左子树大小能小就小,因此每次从小到大枚举左子树的点数并检验,如果检验通过就选定之 现 ...

  2. HDU 5573 Binary Tree 构造

    Binary Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5573 Description The Old Frog King lives ...

  3. [Algorithm] Construct a Binary Tree and Binary Search

    function createNode(value) { return { value, left: null, right: null }; } function BinaryTree(val) { ...

  4. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  5. CF1311E Construct the Binary Tree

    膜这场比赛的 \(rk1\) \(\color{black}A\color{red}{lex\_Wei}\) 这题应该是这场比赛最难的题了 容易发现,二叉树的下一层不会超过这一层的 \(2\) 倍,所 ...

  6. Data Structure Binary Tree: Construct Full Binary Tree from given preorder and postorder traversals

    http://www.geeksforgeeks.org/full-and-complete-binary-tree-from-given-preorder-and-postorder-travers ...

  7. [Swift]LeetCode105. 从前序与中序遍历序列构造二叉树 | Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. [Leetcode] Construct binary tree from preorder and inorder travesal 利用前序和中续遍历构造二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:  You may assume tha ...

随机推荐

  1. python3的subprocess的各个方法的区别(-)

    subprocess(python3.7) subprocess 主要是为了替换一下的模块函数,允许你执行一些命令,并获取返回的状态码和 输入,输出和错误信息. os.systemos.spawn* ...

  2. go 基本包

    像 fmt.os 等这样具有常用功能的内置包在 Go 语言中有 150 个以上,它们被称为标准库,大部分(一些底层的除外)内置于 Go 本身 unsafe: 包含了一些打破 Go 语言“类型安全”的命 ...

  3. Array(数组)对象-->unshift() 方法

    1.定义和用法 unshift() 方法可向数组的开头添加一个或更多元素,并返回新的长度. 语法: array.unshift(item1,item2, ..., itemX) 参数:item1,it ...

  4. HTML5实现刷脸支付

    最近刷脸支付很火,老板们当然要追赶时代潮流,于是就有了刷脸支付这个项目.前端实现关键的技术是摄像头录像,拍照和人脸比对,本文来探讨一下如何在html5环境中如何实现刷脸支付以及开发过程中遇到的问题. ...

  5. Powershell如何制定属性并输出

    这个标题看着有些云里雾里.... 前一阵,群里有个朋友问博主“我想把所有用户的SMTP地址全部输出到CSV文件中进行统计,但是SMTP地址似乎输出的是错误的,可在shell里看输出的内容是正确的阿” ...

  6. 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号

    算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...

  7. 003-scanf函数使用和表达式-C语言笔记

    003-scanf函数使用和表达式-C语言笔记 学习目标 1.[掌握]输入函数scanf的基本使用方法 2.[掌握]输入函数scanf运行原理和缓冲区理解 3.[掌握]算术运算符和算术表达式的使用 4 ...

  8. AJ学IOS(44)之网易彩票自定义图片在右边的Button_弹出view_ios6,7简单适配

    AJ分享,必须精品 效果: 注意图里面了吗,其实那个效果做起来真的很简单,在iOS中苹果给我们封装的很好,关键是那个按钮 系统的按钮的图片是在左边的,这里我们需要把他调整到右边,然后呢需要我们自己做一 ...

  9. AJ学IOS(16)UI之XIB自定义Cell实现团购UI

    AJ分享,必须精品 先看效果图 自定义Cell 本次主要是自定义Cell的学习 实现自定义Cell主要有三种方法:按照使用的频繁度排序: XIB > 纯代码 > StoryBoard XI ...

  10. 如何批量修改文件后缀名,python来帮你

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...