【BZOJ5324】[JXOI2018]守卫(动态规划)
【BZOJ5324】[JXOI2018]守卫(动态规划)
题面
题解
既然只能看到横坐标在左侧的点,那么对于任意一个区间\([l,r]\)而言,\(r\)必须被选。
假设\(r\)看不到若干个区间,其中一个区间是\([x,y]\),因为\(y+1\)能够被看到,所以\([y+2,r]\)这一段一定看不到\([x,y]\)。因此\(y,y+1\)中必须要选择一个。
先预处理出任意两点之间能够互相看到,这个东西的复杂度是\(O(n^2)\)的。
设\(f[l][r]\)表示区间\([l,r]\)的答案。
固定右端点,向左扫,每次求出当前的看不到的区间,那么\(f[l][r]=1+\sum min(f[x][y],f[x][y+1])\)。
这样子的时间复杂度就是\(O(n^2)\)的了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 5050
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,ans,a[MAX],f[MAX][MAX];
bool g[MAX][MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)
for(int j=i-1,lst=0;j;--j)
if(!lst||1ll*(a[i]-a[j])*(i-lst)<1ll*(a[i]-a[lst])*(i-j))
g[i][j]=g[j][i]=true,lst=j;
for(int i=1;i<=n;++i)
for(int j=i,s=1,lst=0;j;--j)
{
if(g[i][j]){if(!g[i][j+1])s+=min(f[j+1][lst],f[j+1][lst+1]);f[j][i]=s;}
else{if(g[i][j+1])lst=j;f[j][i]=s+min(f[j][lst],f[j][lst+1]);}
ans^=f[j][i];
}
printf("%d\n",ans);
return 0;
}
【BZOJ5324】[JXOI2018]守卫(动态规划)的更多相关文章
- BZOJ5324 JXOI2018守卫(区间dp)
对于每个区间[l,r],显然右端点r是必须放置守卫的.考虑其不能监视到的点,构成一段段区间.一个非常显然但我就是想不到的性质是,对于这样的某个区间[x,y],在(y+1,r)内的点都是不能监视到这个区 ...
- BZOJ5324 JXOI2018 守卫
传送门 这是我见过的为数不多的良心九怜题之一 题目大意 给定一段$n$个点构成的折线,第$i$个折点的坐标是$(i,h_i)$,你可以在$i$点放置一个视野,定义$i$能看到$j$当且仅当$i$处有视 ...
- [JXOI2018]守卫
嘟嘟嘟 正如某题解所说,这题很有误导性:我就一直在想凸包. 随便一个数据,就能把凸包hack掉: 这样我们的点G就gg了. 所以正解是什么呢?dp. 题解看这位老哥的吧,我感觉挺好懂的:题解 P456 ...
- BZOJ5324 & 洛谷4563 & LOJ2545:[JXOI2018]守卫——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5324 https://www.luogu.org/problemnew/show/P4563 ht ...
- 洛谷P4563 [JXOI2018]守卫(dp)
题意 题目链接 Sol 非常有意思的题目. 我们设\(f[l][r]\)表示区间\([l,r]\)的答案. 显然\(r\)位置一定有一个保镖 同时不难观察到一个性质:拿\([1, n]\)来说,设其观 ...
- JXOI2018守卫 区间DP
链接 https://loj.ac/problem/2545 思路 f[i][j]表示i到j区间的最小监视人数 可以预处理出来g[i][j],表示i能否监视到j (其实预处理的关系不大,完全可以直接判 ...
- [洛谷P4563][JXOI2018]守卫
题目大意:有一段$n(n\leqslant5\times10^3)$个点的折线,特殊点可以覆盖它以及它左边的它可以“看见”的点(“看见”指连线没有其他东西阻挡).定义$f_{l,r}$为区间$[l,r ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- 【JXOI2018】守卫
[JXOI2018]守卫 参考题解:https://blog.csdn.net/dofypxy/article/details/80196942 大致思路就是:区间DP.对于\([l,r]\)的答案, ...
随机推荐
- Django 中的Form、ModelForm
一.ModelForm 源码 class ModelForm(BaseModelForm, metaclass=ModelFormMetaclass): pass def modelform_fact ...
- vue单页面模板说明文档(2)
Linter Configuration This boilerplate uses ESLint as the linter, and uses the Standard preset with s ...
- React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton)
React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton) 一,需求与简单介绍 在开发项目时发现RN没有给提供RadioButton和Rad ...
- 初次启动hive,解决 ls: cannot access /home/hadoop/spark-2.2.0-bin-hadoop2.6/lib/spark-assembly-*.jar: No such file or directory问题
>>提君博客原创 http://www.cnblogs.com/tijun/ << 刚刚安装好hive,进行第一次启动 提君博客原创 [hadoop@ltt1 bin]$ ...
- java使用顺序存储实现队列
详细连接 https://blog.csdn.net/ljxbbss/article/details/78135993 操作系统:当电脑卡的时候,如果不停点击,还是卡死,最后终于电脑又好了以后,操作 ...
- admin快速搭建后台管理系统
一.基于admin后台管理系统的特点: 权限管理:权限管理是后台管理系统必不可少的部分,拥有权限管理,可以赋予用户增删改查表权限(可以分别赋予用户对不同的表有不同的操作权限): 前端样式少:后台管理主 ...
- linux audit审计(8)--开启audit对系统性能的影响
我们使用测试性能的工具,unixbench,它有一下几项测试项目: Execl Throughput 每秒钟执行 execl 系统调用的次数 Pipe Throughput 一秒钟内一个进程向一个管道 ...
- react & youtube
react & youtube https://www.npmjs.com/package/react-youtube https://developers.google.com/youtub ...
- 老男孩python学习自修【第二天】字符串用法
实时处理增量日志最佳实践 主要使用f.seek()和f.tell()实现 字符串处理函数: s.find(substr, start, end) 查找子字符串,找不到则返回-1,找到则返回对应的索引 ...
- Java的HashMap数据结构
标题太大~~~自己做点笔记.别人写得太好了. https://www.cnblogs.com/liwei2222/p/8013367.html HashMap 1.6时代, 使用Entry[]数组, ...