【BZOJ2125】最短路(仙人掌,圆方树)
【BZOJ2125】最短路(仙人掌,圆方树)
题面
BZOJ
求仙人掌上两点间的最短路
题解
终于要构建圆方树啦
首先构建出圆方树,因为是仙人掌,和一般图可以稍微的不一样
直接\(tarjan\)缩点,对于每一个强连通分量构建方点(只有一个点的就不要建了)
圆方边的权值定义为到\(dfs\)(\(Tarjan\)不就是搞了一棵\(dfs\)树出来吗?)树上深度最小的点的最短距离。
为什么会有最短距离?因为它是一个环啊,走两侧的距离是不同的。
将圆方树树链剖分,和普通的求距离一样,先求解\(LCA\)
如果\(LCA\)是圆点,那么和普通的树没有任何区别,直接求解
如果是方点,那么意味这这两个点的祖先在一个环上
因此,最短路要考虑这个环上这两个祖先的较小距离
对于方点维护一下环的长度,记录一下每个点到达深度最小的点是否经过返祖边
求距离时,首先跳到这两个环上的点,然后计算一下距离就好啦。
怎么跳到环上?
方案一:不用树链剖分了,我直接用倍增
方案二:考虑树链剖分每个点只有一个重儿子,现在要求的是当前这个点到达\(LCA\)的所有祖先中,是\(LCA\)儿子的那个点。
我们分类讨论一下,如果它是重儿子,那就是\(LCA\)的\(dfs\)序的后面那个点。
如果不是重儿子,那么它就是一条重链的起点,并且他的父亲是\(LCA\)。
既然这样,沿着重链跳就好啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 20000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next,w;};
struct Link
{
Line e[111111];
int h[MAX],cnt;
inline void Add(int u,int v,int w)
{
e[++cnt]=(Line){v,h[u],w};h[u]=cnt;
e[++cnt]=(Line){u,h[v],w};h[v]=cnt;
}
}T,G;
int n;
struct RST
{
int fa[MAX],size[MAX],hson[MAX],top[MAX],dep[MAX],dis[MAX];
int dfn[MAX],tim,ln[MAX],cir[MAX];
bool zn[MAX];
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;dep[u]=dep[ff]+1;
for(int i=T.h[u];i;i=T.e[i].next)
{
int v=T.e[i].v;if(v==ff)continue;
dis[v]=dis[u]+T.e[i].w;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim,ln[tim]=u;
if(hson[u])dfs2(hson[u],tp);
for(int i=T.h[u];i;i=T.e[i].next)
if(T.e[i].v!=fa[u]&&T.e[i].v!=hson[u])
dfs2(T.e[i].v,T.e[i].v);
}
int LCA(int u,int v)
{
while(top[u]^top[v])dep[top[u]]<dep[top[v]]?v=fa[top[v]]:u=fa[top[u]];
return dep[u]<dep[v]?u:v;
}
int Jump(int u,int LCA)
{
int ret;
while(top[u]!=top[LCA])
ret=top[u],u=fa[top[u]];
return u==LCA?ret:ln[dfn[LCA]+1];
}
int Query(int u,int v)
{
int lca=LCA(u,v);
if(lca<=n)return dis[u]+dis[v]-2*dis[lca];
int uu=Jump(u,lca),vv=Jump(v,lca);
int d1=dis[uu]-dis[lca],d2=dis[vv]-dis[lca];
if(!zn[uu])d1=cir[lca]-d1;if(!zn[vv])d2=cir[lca]-d2;
return dis[u]-dis[uu]+dis[v]-dis[vv]+min(abs(d1-d2),cir[lca]-abs(d1-d2));
}
}RST;
int dfn[MAX],low[MAX],tim,tp[MAX],dep[MAX];
int fa[MAX];
ll dis[MAX];
int S[MAX],tot,m,Q;
void Build(int u,int y,int d)
{
int top=dep[y]-dep[u]+1,sum=d,Dis=0;
for(int i=y;i!=u;i=fa[i])S[top--]=i,sum+=dis[i]-dis[fa[i]];
++tot;S[1]=u;top=dep[y]-dep[u]+1;RST.cir[tot]=sum;
for(int i=1;i<=top;++i)
{
int D=min(Dis,sum-Dis);
T.Add(tot,S[i],D);
RST.zn[S[i]]=(D==Dis);
Dis+=dis[S[i+1]]-dis[S[i]];
}
}
void Tarjan(int u,int ff)
{
dfn[u]=low[u]=++tim;dep[u]=dep[ff]+1;fa[u]=ff;
for(int i=G.h[u];i;i=G.e[i].next)
{
int v=G.e[i].v;if(v==ff)continue;
if(!dfn[v])
{
dis[v]=dis[u]+G.e[i].w;
Tarjan(v,u);low[u]=min(low[u],low[v]);
}
else low[u]=min(low[u],dfn[v]);
if(dfn[u]<low[v])T.Add(u,v,G.e[i].w);
}
for(int i=G.h[u];i;i=G.e[i].next)
{
int v=G.e[i].v;if(v==ff)continue;
if(fa[v]!=u&&dfn[u]<dfn[v])Build(u,v,G.e[i].w);
}
}
int main()
{
tot=n=read();m=read();Q=read();G.cnt=1;
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
G.Add(u,v,w);
}
Tarjan(1,0);
RST.dfs1(1,0);RST.dfs2(1,1);
while(Q--)printf("%d\n",RST.Query(read(),read()));
return 0;
}
【BZOJ2125】最短路(仙人掌,圆方树)的更多相关文章
- 2018.07.25 bzoj2125: 最短路(圆方树+倍增)
传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...
- BZOJ.2125.最短路(仙人掌 圆方树)
题目链接 圆方树.做题思路不写了.. 就是当LCA是方点时跳进那个环可以分类讨论一下用树剖而不必须用倍增: 如果v是u的(唯一的那个)重儿子,那么u的DFS序上+1的点即是要找的:否则v会引出一条新的 ...
- 仙人掌&圆方树学习笔记
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...
- 仙人掌 && 圆方树 && 虚树 总结
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...
- 仙人掌&圆方树
仙人掌&圆方树 Tags:图论 [x] [luogu4320]道路相遇 https://www.luogu.org/problemnew/show/P4320 [ ] [SDOI2018]战略 ...
- UOJ.87.mx的仙人掌(圆方树 虚树)(未AC)
题目链接 本代码10分(感觉速度还行..). 建圆方树,预处理一些东西.对询问建虚树. 对于虚树上的圆点直接做:对于方点特判,枚举其所有儿子,如果子节点不在该方点代表的环中,跳到那个点并更新其val, ...
- [BZOJ2125]最短路(圆方树DP)
题意:仙人掌图最短路. 算法:圆方树DP,$O(n\log n+Q\log n)$ 首先建出仙人掌圆方树(与点双圆方树的区别在于直接连割边,也就是存在圆圆边),然后考虑点u-v的最短路径,显然就是:在 ...
- 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)
orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...
- [BZOJ4316]小C的独立集(圆方树DP)
题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...
- 圆方树&广义圆方树[学习笔记]
仙人掌 圆方树是用来解决仙人掌图的问题的,那什么是仙人掌图呢? 如图,不存在边同时属于多个环的无向连通图是一棵仙人掌 圆方树 定义 原先的仙人掌图,通过一些奇妙的方法,可以转化为一棵由圆点,方点和树边 ...
随机推荐
- 多线程系列之七:Read-Write Lock模式
一,Read-Write Lock模式 在Read-Write Lock模式中,读取操作和写入操作是分开考虑的.在执行读取操作之前,线程必须获取用于读取的锁.在执行写入操作之前,线程必须获取用于写入的 ...
- js this的含义以及讲解
this关键字是一个非常重要的语法点.毫不夸张地说,不理解它的含义,大部分开发任务都无法完成. 首先,this总是返回一个对象,简单说,就是返回属性或方法“当前”所在的对象. 下面来两个例子来让大家更 ...
- vue组件封装选项卡
<template> <myMenu :arr='arr' :arrcontent='content'></myMenu> </template> &l ...
- 关于JS动画和CSS3动画的性能差异
本文章为综合其它资料所得. 根据Google Developer,Chromium项目里,渲染线程分为main thread和compositor thread. 如果CSS动画只是改变transfo ...
- PHP中stdClass的意义
在WordPress中很多地方使用stdClass来定义一个对象(而通常是用数组的方式),然后使用get_object_vars来把定义的对象『转换』成数组. 如下代码所示: 1 2 3 4 5 ...
- [转帖]nginx服务器安装及配置文件详解
nginx服务器安装及配置文件详解 http://seanlook.com/2015/05/17/nginx-install-and-config/ 发表于 2015-05-17 | 更新于: 2 ...
- php 删除一维数组中某一个值元素的操作方法
1. 自己写for循环 从array里去掉$tmp这个元素的值 ? 1 2 3 4 5 6 7 8 9 10 <?php $tmp = '324'; $arr = array( '0' => ...
- Flutter 中 JSON 解析
本文介绍一下Flutter中如何进行json数据的解析.在移动端开发中,请求服务端返回json数据并解析是一个很常见的使用场景.Android原生开发中,有GsonFormat这样的神器,一键生成Ja ...
- python爬虫之Phantomjs安装和使用
phantomjs: PhantomJS是一个无界面的,可脚本编程的WebKit浏览器引擎.它原生支持多种web 标准:DOM 操作,CSS选择器,JSON,Canvas 以及SVG. phantom ...
- python爬虫之git的使用(coding.net的使用)
1.注册coding.net账号,然后登陆. 2.创建项目 套路和github都一样. 1.1.我们在远程仓库上创建了一个仓库,这样的话,我们需要在本地随便建立一个文件普通文件夹,进去以后,执行git ...