题目大意

​  小Q发明了一种进位制,每一位的变化范围是\(0\)~\(b_i-1\),给你一个这种进位制下的整数\(a\),问你有多少非负整数小于\(a\)。结果以十进制表示。

​  \(n\leq 120000,0\leq a_i<b_i\leq 1000000\)

题解

​  就是求这个数。

​  那没什么好说的,直接分治FFT

  处理左半边(低位)的\(c_1=\prod b_i\)和答案\(d_1\),右半边的\(c2,d2\)

​  那么\(c=c_1\times c_2,d=d_2\times c_1+d_1\)

​  时间复杂度:\(O(n\log^2 n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
//typedef long double ld;
typedef double ld;
//const ld pi=3.1415926535897932384626433832L;
const ld pi=acos(ld(-1));
struct cp
{
ld x,y;
cp(ld _x=0,ld _y=0)
{
x=_x;
y=_y;
}
};
cp conj(cp &a){return cp(a.x,-a.y);}
cp operator +(cp &a,cp &b){return cp(a.x+b.x,a.y+b.y);}
cp operator -(cp &a,cp &b){return cp(a.x-b.x,a.y-b.y);}
cp operator *(cp &a,cp &b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
cp operator /(cp &a,ld b){return cp(a.x/b,a.y/b);}
cp a1[500010];
cp a2[500010];
cp a3[500010];
cp w1[500010];
cp w2[500010];
int rev[500010];
int N;
namespace fft
{
void get(int n)
{
N=1;
while(N<n)
N<<=1;
int i;
for(i=2;i<=N;i<<=1)
{
w1[i]=cp(cos(ld(2*pi/i)),sin(ld(2*pi/i)));
w2[i]=conj(w1[i]);
}
for(i=0;i<N;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?(N>>1):0);
}
void fft(cp *a,int t)
{
int i,j,k;
cp w,wn,u,v;
for(i=0;i<N;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=N;i<<=1)
{
wn=t?w1[i]:w2[i];
for(j=0;j<N;j+=i)
{
w=cp(1);
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w;
a[k]=u+v;
a[k+i/2]=u-v;
w=w*wn;
}
}
}
if(!t)
for(i=0;i<N;i++)
a[i]=a[i]/N;
}
}
ll a[500010];
ll b[500010];
ll c[500010];
ll d[500010];//答案
ll e[500010];
ll f[500010];
const ll A=1000;
const ll B=1000000;
void cheng(ll *a1,int n1,ll *a2,int n2,ll *a3,int n3)
{
int i,j;
for(i=0;i<n3;i++)
a3[i]=0;
for(i=0;i<n1;i++)
for(j=0;j<n2;j++)
a3[i+j]+=a1[i]*a2[j];
}
void clear(ll *a,int n)
{
int i;
for(i=0;i<n;i++)
a[i]=0;
}
void cheng(ll *a1,int n1,ll a2)
{
int i;
for(i=0;i<n1;i++)
a1[i]*=a2;
}
void jia(ll *a1,int n1,ll *a2,int n2,ll *a3,int n3)
{
int i;
for(i=0;i<n3;i++)
a3[i]=0;
for(i=0;i<n1||i<n2;i++)
{
ll s1=(i<n1?a1[i]:0);
ll s2=(i<n2?a2[i]:0);
a3[i]+=s1+s2;
}
}
void jia(ll *a1,ll *a2,int n2)
{
int i;
for(i=0;i<n2;i++)
a1[i]+=a2[i];
}
void solve(int l,int r)
{
if(l==r)
{
// d[l]=b[l];
// c[l]=a[l];
d[l*2]=b[l]%A;
d[l*2+1]=b[l]/A;
c[l*2]=a[l]%A;
c[l*2+1]=a[l]/A;
return;
}
if(r-l+1<=20)
{
int i,j;
int len=(r-l+1);
clear(c+l*2,len*2);
clear(d+l*2,len*2);
c[l*2]=1;
for(i=0;i<len;i++)
{
memcpy(e+l*2,c+l*2,len*sizeof(ll)*2);
cheng(e+l*2,len*2,b[l+i]);
for(j=0;j<len*2-1;j++)
{
e[l*2+j+1]+=e[l*2+j]/A;
e[l*2+j]%=A;
}
jia(d+l*2,e+l*2,len*2);
for(j=0;j<len*2-1;j++)
{
d[l*2+j+1]+=d[l*2+j]/A;
d[l*2+j]%=A;
}
cheng(c+l*2,len*2,a[l+i]);
for(j=0;j<len*2-1;j++)
{
c[l*2+j+1]+=c[l*2+j]/A;
c[l*2+j]%=A;
}
}
return;
}
int mid=(l+r)>>1;
solve(l,mid);
solve(mid+1,r);
int llen=mid-l+1;
int rlen=r-mid;
int len=r-l+1;
llen*=2;
rlen*=2;
len*=2;
// if(len>50000&&r==69999)
// int xfz=1;
// if(l==0)
// int xfz=1;
int i;
fft::get(len);
for(i=0;i<llen;i++)
a1[i]=cp(c[l*2+i]);
for(i=llen;i<N;i++)
a1[i]=cp();
for(i=0;i<rlen;i++)
{
a2[i]=cp(c[mid*2+2+i]);
a3[i]=cp(d[mid*2+2+i]);
}
for(i=rlen;i<N;i++)
a2[i]=a3[i]=cp();
fft::fft(a1,1);
fft::fft(a2,1);
fft::fft(a3,1);
for(i=0;i<N;i++)
{
a2[i]=a2[i]*a1[i];
a3[i]=a3[i]*a1[i];
}
fft::fft(a2,0);
fft::fft(a3,0);
// if(len>50000&&r==69999)
// int xfz=1;
for(i=0;i<len;i++)
{
c[l*2+i]=ll(a2[i].x+0.4);
e[l*2+i]=ll(a3[i].x+0.4);
}
for(i=0;i<llen;i++)
e[l*2+i]+=d[l*2+i];
for(i=0;i<len;i++)
d[l*2+i]=e[l*2+i];
for(i=0;i<len-1;i++)
{
c[l*2+i+1]+=c[l*2+i]/A;
c[l*2+i]%=A;
d[l*2+i+1]+=d[l*2+i]/A;
d[l*2+i]%=A;
}
// cheng(c+l,llen,d+mid+1,rlen,e,len);
// jia(e,len,d+l,llen,f,len);
// int i;
// for(i=0;i<len;i++)
// d[l+i]=f[i];
// for(i=0;i<len-1;i++)
// {
// d[l+i+1]+=d[l+i]/A;
// d[l+i]%=A;
// }
// cheng(c+l,llen,c+mid+1,rlen,e,len);
// for(i=0;i<len;i++)
// c[l+i]=e[i];
// for(i=0;i<len-1;i++)
// {
// c[l+i+1]+=c[l+i]/A;
// c[l+i]%=A;
// }
}
int main()
{
// freopen("conv.in","r",stdin);
// freopen("conv-2.out","w",stdout);
int n;
scanf("%d",&n);
int i;
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
scanf("%d",&b[i]);
solve(0,n-1);
for(i=2*n-1;!d[i];i--);
printf("%d",d[i]);
for(i--;i>=0;i--)
// output(d[i]);
printf("%03d",d[i]);
putchar('\n');
// int n=4;
// fft::get(n);
// a1[0]=cp(1);
// a1[1]=cp(2);
// a2[0]=cp(1);
// a2[1]=cp(2);
// fft::fft(a1,1);
// fft::fft(a2,1);
// int i;
// for(i=0;i<N;i++)
// a1[i]=a1[i]*a2[i];
// fft::fft(a1,0);
return 0;
}

【XSY1529】小Q与进位制 分治 FFT的更多相关文章

  1. (2016北京集训十)【xsy1529】小Q与进位制 - 分治FFT

    题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂 ...

  2. 2016北京集训 小Q与进位制

    题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}bas ...

  3. BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】

    小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到 ...

  4. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  5. [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)

    [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...

  6. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  7. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  8. 【XSY2666】排列问题 DP 容斥原理 分治FFT

    题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...

  9. 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数

    CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...

随机推荐

  1. 漫谈数组去重复方法(亮点是ES6的新API)

    方法1: 利用遍历的思想来进行. <!DOCTYPE html><html lang="en"><head> <meta charset= ...

  2. socket流程

  3. 单列模式,装饰器、new方法、类/静态方法实现单列模式

    一.单列模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在. 如,某个服务器程序的配置信息存放在一个文件中,客户端通过一个 C ...

  4. 学习yii2.0——依赖注入

    依赖注入 依赖注入是一种设计模式,可以搜索“php依赖注入”,这里不阐述了. yii框架的依赖注入 Yii 通过 yii\di\Container 类提供 DI 容器特性. 它支持如下几种类型的依赖注 ...

  5. WebSocket实现一个聊天室

    聊天室页面-->index.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...

  6. MySQL左连接时 返回的记录条数 比 左边表 数量多

    在学MySQL的连接时,为了便于记忆,就将左连接 记做 最后结果的总记录数 和 进行左连接的左表的记录数相同,简单的说就是下面这个公式 count(table A left join table B) ...

  7. Azure系列2.1 —— com.microsoft.azure.storage.blob

    网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习心得做下笔记,文中不正确地方请大家指正. Azure Blob ...

  8. Windows 激活的简单办法(能上网)

    1. 之前很多机器上面总是提示我  盗版系统看起来挺不high的 2. 还是使用之前的办法来进行激活 slmgr  (之前写过) /ipk <Product Key> 安装产品密钥(替换现 ...

  9. Mybatis 配置resultMap一对多关联映射

    resultMap配置: 引用: PO类: 接口: 测试: public class UserMapperTest { private SqlSessionFactory sqlSessionFact ...

  10. vue的地图插件amap

    https://www.jianshu.com/p/0011996b81e2(amap) npm install vue-amap --save