pytorch解决鸢尾花分类
半年前用numpy写了个鸢尾花分类200行。。每一步计算都是手写的 python构建bp神经网络_鸢尾花分类
现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网络
import pandas as pd
import torch.nn as nn
import torch class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 3),
nn.Sigmoid(),
nn.Linear(3, 3),
nn.Sigmoid(),
nn.Linear(3, 1),
)
self.mls = nn.MSELoss()
self.opt = torch.optim.Adam(params=self.parameters(), lr=0.001) def get_data(self):
inputs = []
labels = []
with open('flower.csv') as file:
df = pd.read_csv(file, header=None)
x = df.iloc[:, 0:4].values
y = df.iloc[:, 4].values
for i in range(len(x)):
inputs.append(x[i])
for j in range(len(y)):
a = []
a.append(y[j])
labels.append(a) return inputs, labels def forward(self, inputs):
out = self.fc(inputs)
return out def train(self, x, label):
out = self.forward(x)
loss = self.mls(out, label)
self.opt.zero_grad()
loss.backward()
self.opt.step() def test(self, x):
return self.fc(x) if __name__ == '__main__':
net = MyNet()
inputs, labels = net.get_data()
for i in range(1000):
for index, input in enumerate(inputs):
# 这里不加.float()会报错,可能是数据格式的问题吧
input = torch.from_numpy(input).float()
label = torch.Tensor(labels[index])
net.train(input, label)
# 简单测试一下
c = torch.Tensor([[5.6, 2.7, 4.2, 1.3]])
print(net.test(c))
运行结果趋近于0.5 正确,单纯练一下pytorch,就没有分训练集,测试集
tensor([[0.5392]], grad_fn=<AddmmBackward>)
不用手写反向传播和梯度下降 是多么幸福一件事~
pytorch解决鸢尾花分类的更多相关文章
- Keras入门(一)搭建深度神经网络(DNN)解决多分类问题
Keras介绍 Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把 ...
- ML.NET 示例:多类分类之鸢尾花分类
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案
看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...
- 【笔记】二分类算法解决多分类问题之OvO与OvR
OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR ...
- 采用boosting思想开发一个解决二分类样本不平衡的多估计器模型
# -*- coding: utf-8 -*- """ Created on Wed Oct 31 20:59:39 2018 脚本描述:采用boosting思想开发一个 ...
- 02-15 Logistic回归(鸢尾花分类)
目录 Logistic回归(鸢尾花分类) 一.导入模块 二.获取数据 三.构建决策边界 四.训练模型 4.1 C参数与权重系数的关系 五.可视化 更新.更全的<机器学习>的更新网站,更有p ...
- 02-19 k近邻算法(鸢尾花分类)
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...
- 02-20 kd树(鸢尾花分类)
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...
- 04-04 AdaBoost算法代码(鸢尾花分类)
目录 AdaBoost算法代码(鸢尾花分类) 一.导入模块 二.导入数据 三.构造决策边界 四.训练模型 4.1 训练模型(n_e=10, l_r=0.8) 4.2 可视化 4.3 训练模型(n_es ...
随机推荐
- 初识Python-1
1,计算机基础. 2,python历史. 宏观上:python2 与 python3 区别: python2 源码不标准,混乱,重复代码太多, python3 统一 标准,去除重复代码. 3,pyth ...
- C. Prefixes and Suffixes
链接 [https://codeforces.com/contest/1092/problem/C] 题意 给你某个字符串的长度n,再给你2*n-2个前缀或者后缀 让你判断那些是前缀那些是后缀 关键是 ...
- Python学习资源汇总,转载自他人
python3英文视频教程(全87集) http://pan.baidu.com/s/1dDnGBvV python从入门到精通视频(全60集)链接:http://pan.baidu.com/s/1e ...
- Python IO模型
这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ...
- HTTPS建立连接的过程
HTTP建立连接的过程点击:HTTP三次握手.一次HTTP请求都发生了什么 一.HTTPS HTTP是超文本传输协议.HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私 ...
- react render
实际上react render方法返回一个虚拟dom 并没有去执行渲染dom 渲染的过程是交给react 去完成的 这就说明了为什么要在所有数据请求完成后才去实现render 这样做也提高了性能.只调 ...
- [转帖]批处理-For详解
批处理-For详解 https://www.cnblogs.com/DswCnblog/p/5435300.html for 循环的写法 感觉非常好. 今天下午的时候简单测试了下. 多学习提高 非常重 ...
- 给定一个数组,求如果排序之后,相邻两数的最大差值,要求时间复杂度为O(N),且要求不能用非基于比较的排序
题目: 给定一个数组,求如果排序之后,相邻两数的最大差值,要求时间复杂度为O(N),且要求不能用非基于比较的排序 public static int maxGap(int nums[]) { if ( ...
- uwsgi加nginx部署django restframework前后端分离项目
一.uwsgi和nginx简介 1.uwsgi(摘抄于百度百科): uWSGI是一个Web服务器,它实现了WSGI协议.uwsgi.http等协议.Nginx中HttpUwsgiModule的作用是与 ...
- zabbix-2.4.5的安装配置与使用
系统最小化安装 环境: zabbix_server 12.1.1.1 zabbix_agent 12.1.1.2 zabbix_proxy 12.1.1.3 1.安装环境: ...