【洛谷P1024一元三次方程求解】
题目描述
有形如: ax3 + bx2 + cx1 + dx0 = 0 这样的一个一元三次方程。给出该方程中各项的系数( a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 -100 至 100 之间),且根与根之差的绝对值 ≥1 。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 22 位。
提示:记方程 f(x)=0 ,若存在 2 个数 x1 和 x2 ,且 x1<x2 , f(x1) × f(x2) < 0 ,则在 (x1,x2) 之间一定有一个根。
输入输出格式
输入格式:
一行, 4 个实数 A,B,C,D 。
输出格式:
一行, 3 个实根,并精确到小数点后 2 位。
输入输出样例
1 -5 -4 20
-2.00 2.00 5.00
看到这个题,本蒟蒻首先想到的就是暴力(尽管某奆佬说这可以用搜索),废话不说,一切请看代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main()
{
double a,b,c,d,x;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
for(double i=-;i<=;i+=0.001)//暴力枚举,嘻嘻【洛谷P1024一元三次方程求解】的更多相关文章
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- 洛谷 [P1024]一元三次方程求解【二分答案】
题目链接:https://www.luogu.org/problemnew/show/P1024 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b ...
- [NOIP2001] 提高组 洛谷P1024 一元三次方程求解
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
- 洛谷 [P1024]一元三次方程求解
一道水题然而坑点很多. #include <iostream> #include <cstdio> #include <algorithm> #include &l ...
- 洛谷P1024 一元三次方程求解(数学)
题意 题目链接 Sol 本来是一道好的公式题. 然后输出只要保留两位小数?? 直接上不就赢了嘛.. #include<bits/stdc++.h> #define LL long long ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- luogu【P1024 一元三次方程求解】题解
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
随机推荐
- 关于手机端适配的问题(rem,页面缩放)
关于手机端适配的问题(rem,页面缩放) 96 进击的小前端 关注 2018.02.02 13:57 字数 320 阅读 19评论 0喜欢 0 相信很多和会和我碰到一样的情况,就是你用rem去写移动端 ...
- 关于IWMS后台登录问题总结
一.登录后台,点击登录无反应: 1.是因为网站文件夹没有权限,需要右击文件夹,将只读勾选去掉 2.在安全中加入Everyone对象. 二.登录后台后,左边显示不全,是因为会员权限不够,需要给权限.
- qtp 自动化测试桌面程序-点滴1(录制设置、共用文件)
1 automation-record and run settings--设置录制程序 2 将function/repository 放于单独于test的文件夹中-方便多个test使用同一个仓库.函 ...
- vue自定义组件及传值
1.使用 Vue.component() 方法注册组件 2.使用 props 属性传递参数 v-for="item in items": 遍历 Vue 实例中定义的名为 items ...
- Lodop打印控件打印机可打区域的影响 设置纸张边缘为基点
由于打印机千差万别,打印开发也要注意针对客户各种打印机进行处理,Lodop提供了打印维护(PRINT_SETUP)可针对每个客户端进行微调,保存结果保存在客户端本地,对其他访问网站的客户没有影响. 由 ...
- How to remove ROM in MAME
/usr/share/games/mame/roms/ /usr/local/share/games/mame/roms/ sudo rm /usr/local/share/games/mame/ro ...
- codeforces285B
Find Marble CodeForces - 285B Petya and Vasya are playing a game. Petya's got n non-transparent glas ...
- 高仿Readhub小程序 微信小程序项目【原】
# News #### 项目介绍微信小程序项目涉及功能 https://gitee.com/richard1015/News https://github.com/richard1015/News 高 ...
- Codeforces1036F Relatively Prime Powers 【容斥原理】
题目分析: 这种题目标题写莫比乌斯反演会不会显得太恐怖了,那就容斥算了. gcd不为1的肯定可以开根.所以把根式结果算出来就行了. 辣鸡题目卡我精度. 代码: #include<bits/std ...
- POJ3417 Network(算竞进阶习题)
LCA + 树上差分(边差分) 由题目意思知,所有主要边即为该无向图的一个生成树. 我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径 ...