有n个女性和n个男性。每个女性的如意郎君列表都是所有男性的一个子集,并且可能为空。如果列表非空,她们会在其中选择一个男性作为自己最终接受的对象。将“如意郎君列表”中的男性按照编号从小到大的顺序呈现给她。对于每次呈现,她将独立地以P的概率接受这个男性(换言之,会以1−P的概率拒绝这个男性)。如果她选择了拒绝,App就会呈现列表中下一个男性,以此类推。如果列表中所有的男性都已经呈现,那么会重新按照列表的顺序来呈现这些男性,直到她接受了某个男性为止。显然,在这种规则下,每个女性只能选择接受一个男性,而一个男性可能被多个女性所接受。当然,也可能有部分男性不被任何一个女性接受。这样,每个女性就有了自己接受的男性(“如意郎君列表”为空的除外)。现在考虑任意两个不同的、如意郎君列表非空的女性a和b,如果a的编号比b的编号小,而a选择的男性的编号比b选择的编号大,那么女性a和女性b就叫做一对不稳定因素。求得不稳定因素的期望个数(即平均数目)

Solution

此题要求期望的逆序对数,我们先分析每个男性在每个女性的选择中被选择的概率(图是网上抄来的)

等比数列求和一下

概率求出来了,我们就可以以男性编号为下标,维护一个树状数组,里面的值代表这个男性在前面出现的期望次数。

求出这个后,我们在乘上当前男性被选择的概率就可以成为答案的一部分。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 500002
using namespace std;
typedef long double ld;
ld ans,tr[N],p;
int n,m;
struct zzh{
int x,y;
}a[N];
bool cmp(zzh a,zzh b){
if(a.x!=b.x)return a.x<b.x;
else return a.y<b.y;
}
void add(int x,ld y){while(x<=n)tr[x]+=y,x+=x&-x;}
double query(int x){double ans=;while(x)ans+=tr[x],x-=x&-x;return ans;}
int main(){
// freopen("4481.in","r",stdin);
// freopen("4481.out","w",stdout);
scanf("%d%d%Lf",&n,&m,&p);
for(int i=;i<=m;++i)scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a+m+,cmp);
int now=;
for(int i=now;i<=m;i=now+){
now=i;
while(a[now].x==a[now+].x)now++;
ld x=;
for(int j=i;j<=now;++j)x*=(-p);x=-x;
ld y=p;
for(int j=i;j<=now;++j){
ld xx=y/x;
add(n-a[j].y+,xx);
ans+=xx*query(n-a[j].y);
y*=(-p);
}
}
printf("%.2Lf",ans);
return ;
}

bzoj4481非诚勿扰(期望dp)的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. Python3练习题 022:用递归函数反转字符串

    方法一 str = input('请输入若干字符:')   def f(x):     if x == -1:         return ''     else:         return s ...

  2. connect、resource和dba三种标准角色

    授权语句:grant connect,resource,dba to zwserver 经过授权以后,用户拥有connect.resource和dba三个角色的权限: (1)Connect 角色,是授 ...

  3. react render

    实际上react render方法返回一个虚拟dom 并没有去执行渲染dom 渲染的过程是交给react 去完成的 这就说明了为什么要在所有数据请求完成后才去实现render 这样做也提高了性能.只调 ...

  4. C#复习笔记(3)--C#2:解决C#1的问题(进入快速通道的委托)

    委托 前言:C#1中就已经有了委托的概念,但是其繁杂的用法并没有引起开发者太多的关注,在C#2中,进行了一些编译器上的优化,可以用匿名方法来创建一个委托.同时,还支持的方法组和委托的转换.顺便的,C# ...

  5. CentOS7 下面安装jdk1.8

    1. 卸载已有的jdk rpm -qa |grep jdk |xargs rpm -e --nodeps 2. 使用xftp上传 jdk 的文件我这里上传的是 jdk-8u121-linux-x64. ...

  6. Java8 Stream实例--统计出所有含‘张’字的人员的平均年龄

    package com.zhangxueliang.demo; import java.util.ArrayList; import java.util.List; import java.util. ...

  7. mybatis两种开发方式

    本文首先讲解从JDBC到mybatis的演变过程,然后是使用mybatis进行开发的两种方式. 一 JDBC的使用及其优化 1.使用JDBC进行数据库操作 加载JDBC驱动: 建立并获取数据库连接: ...

  8. PS中如何把图片颜色加到字体上去

    1.在PS中的图层中,将图片置于文字层的上方,同时按ctrl+alt+g键,这样就将文字范围以外的图像给剪切掉了.见附图下方的效果. 2.最终效果如下图: 参见:https://zhidao.baid ...

  9. python之路--关于线程的一些方法

    一 . 线程的两种创建方式 from threading import Thread # 第一种创建方式 def f1(n): print('%s号线程任务'%n) def f2(n): print( ...

  10. 如何使用 Yum Repository 安装指定版本的 MySQL

    自从从使用 debian 系的 apt-get 转到使用 yum 工具之后一直不是很习惯,也没有去看过很多工具包安装的时候到底影响到了哪些文件等.这次借这次社区版 MySQL 安装来一并梳理一下. 首 ...