Luogu3177 [HAOI2015]树上染色 (树形DP)
考场上打出来个\(2^n n^2 \log (n)\),还文件错误RE了。。。
其实这不就是个变了一点点的树形背包,状态是节点\(u\)子树的\(贡献\)。
//#include <iostream>
#include <cstdio>
#include <cstring>
//#include <algorithm>
//#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 2007;
#define int long long
struct Edge{
int nxt, pre, w;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v, int w){
e[++cntEdge] = (Edge){ head[u], v, w}, head[u] = cntEdge;
}
int n, K;
int f[N][N], siz[N];
inline void DFS(int u, int fa){
siz[u] = 1;
f[u][0] = f[u][1] = 0;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == fa) continue;
DFS(v, u);
siz[u] += siz[v];
nR(j,Min(siz[u], K),0){
if(f[u][j] != -1)
f[u][j] += f[v][0] + siz[v] * (n - K - siz[v]) * e[i].w;
nR(t,Min(siz[v], j),1){
if(f[u][j - t] == -1) continue;
int val = (t * (K - t) + (siz[v] - t) * (n - K - siz[v] + t)) * e[i].w;
f[u][j] = Max(f[u][j], f[u][j - t] + f[v][t] + val);
}
}
}
}
#undef int
int main(){
#define int long long
//FileOpen();
io >> n >> K;
R(i,2,n){
int u, v, w;
io >> u >> v >> w;
add(u, v, w);
add(v, u, w);
}
Fill(f, -1);
if(n - K < K) K = n - K;
DFS(1, 0);
printf("%lld", f[1][K]);
return 0;
}

Luogu3177 [HAOI2015]树上染色 (树形DP)的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- 【HAOI2015】树上染色—树形dp
[HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
- 【HAOI2015】树上染色 - 树形 DP
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
随机推荐
- 报‘galleryElements’
是因为组件的data(){ //没有return{ }引起的 }
- 用t-SNE进行流形学习(digits数据集)
流行学习算法: 是一类用于可视化的算法,它允许进行更复杂的映射,通常也可以给出更好的可视化. t-SNE算法是其中一种. PCA是用于变换数据的首选方法,也可以进行可视化,但它的性质(先旋转然后减少方 ...
- js 动画补间 Tween
1 /* RunningList (触发过程中可以安全的删除自己) 2 如果触发过程中删除(回调函数中删除正在遍历的数组), 不仅 len 没有变(遍历前定义的len没有变, 真实的len随之减少), ...
- torch.cat()和torch.stack()
torch.cat() 和 torch.stack()略有不同torch.cat(tensors,dim=0,out=None)→ Tensortorch.cat()对tensors沿指定维度拼接,但 ...
- 155_模型_Power BI & Power Pivot 进销存之安全库存
155_模型_Power BI & Power Pivot 进销存之安全库存 一.背景 谈进销存的概念时,我们也需要提及另外一个概念:安全库存. 库存周转在理想的状态下是做到零库存,但是在内部 ...
- 使用FileSystemWatcher监听文件状态
更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月2日. 一.FileSystemWatcher类型介绍 在.NET中使用 FileSystemWatcher 类型可以进行监视指定 ...
- SpringBoot之:SpringBoot中使用HATEOAS
目录 简介 我们的目标 构建Entity和Repository 构建HATEOAS相关的RepresentationModel 构建Controller HATEOAS的意义 总结 简介 HATEOA ...
- 搭建ceph分布式文件系统
1. 准备4台虚拟机 ceph 192.168.66.93 管理osd,mon节点 ceph-node1 192.168.66.94 osd节点 ceph-node2 192.168.66.95 ...
- Docker 与 K8S学习笔记(二十五)—— Pod的各种调度策略(上)
上一篇,我们学习了各种工作负载的使用,工作负载它会自动帮我们完成Pod的调度和部署,但有时我们需要自己定义Pod的调度策略,这个时候该怎么办呢?今天我们就来看一下如何定义Pod调度策略. 一.Node ...
- CF333E Summer Earnings
CF333E Summer Earnings 题目 https://codeforces.com/problemset/problem/333/E 题解 思路 知识点:枚举,图论,位运算. 题目要求从 ...