LuoguP1516 青蛙的约会 (Exgcd)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ON_DEBUGG
#ifdef ON_DEBUGG
#define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io;
#define int long long
inline int Gcd(int a, int b){
while(b ^= a ^= b ^= a %= b);
return a;
// if(!b) return a;
// return Gcd(b, a % b);
}
inline void Exgcd(int a, int b, int &x, int &y){
if(!b)
x = 1, y = 0;
else
Exgcd(b, a % b, y, x), y -= x * (a / b);
}
#undef int
int main(){
#define int long long
int a, b, m, n, L;
io >> a >> b >> m >> n >> L;
int A = n - m, B = L, C = a - b;
if(A < 0){
A = -A, C = -C;
}
int r = Gcd(A, B);
if(C % r){
printf("Impossible");
return 0;
}
A /= r, B /= r, C /= r;
//D_e(B);
int x, y;
Exgcd(A, B, x, y);
// cout << x * C << endl;
// cout << x * C % B << endl;
// cout << x * C % B + B << endl;
printf("%lld", (x * C % B + B) % B);
return 0;
}
/*
(n - m) * x + L * y = a - b
A = n - m
B = L
C = A - B
*/
LuoguP1516 青蛙的约会 (Exgcd)的更多相关文章
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
- POJ1061 青蛙的约会 exgcd
这个题虽然很简单,但是有一个比较坑的地方,就是gcd不一定是1,有可能是别的数.所以不能return 1,而是return a; 题干: Description 两只青蛙在网上相识了,它们聊得很开心, ...
- LuoGuP1516 青蛙的约会 + 同余方程 拓展欧几里得
题意:有两只青蛙,在一个圆上顺时针跳,问最少的相遇时间. 这个是同余方程的思路.可列出方程:(m-n)* X% L = y-x(mod L) 简化为 a * x = b (mod L) (1 ...
- [luoguP1516] 青蛙的约会(扩展欧几里得)
传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * ...
- P1516/bzoj1477 青蛙的约会
青蛙的约会 exgcd 根据题意列出方程: 设所用时间为T,相差R圈时相遇 (x+T*m)-(y+T*n)=R*l 移项转换,得 T*(n-m)-R*l=x-y 设a=n-m,b=l,c=x-y,x_ ...
- POJ1061青蛙的约会[扩展欧几里得]
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 108911 Accepted: 21866 Descript ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- BZOJ-1477 青蛙的约会 拓展欧几里德
充权限之前做的...才来交 1477: 青蛙的约会 Time Limit: 2 Sec Memory Limit: 64 MB Submit: 369 Solved: 233 [Submit][Sta ...
随机推荐
- webpack.config.js和vue.config.js的区别
webpack.config.js是webpack的配置文件,所有使用webpack作为打包工具的项目都可以使用,vue的项目可以使用,react的项目也可以使用. vue.config.js是vue ...
- 第06组 Beta冲刺 (4/5)
目录 1.1 基本情况 1.2 冲刺概况汇报 1.郝雷明 2. 方梓涵 3.曾丽莉 4.鲍凌函 5. 董翔云 6.黄少丹 7.杜筱 8.詹鑫冰 9.曹兰英 10.吴沅静 1.3 冲刺成果展示 1.1 ...
- python requires模块 https请求 由于TLS协议版本太高导致错误
错误提示 requests.exceptions.SSLError: HTTPSConnectionPool(host='air.cnemc.cn', port=18007): Max retries ...
- Vue2自定义插件的写法-Vue.use()
最近在用vue2完善一个项目,顺便温习下vue2的基础知识点! 有些知识点恰好没用到时间一长就会淡忘,这样对自己是一种损失. 定义一个对象 对象里可以有任何内容 但install的函数是必不可少的,因 ...
- Docker部署jar包运行
1.上传jar包到服务器 2.在该目录下创建Dockerfile 文件 vi Dockerfile 3.然后将下面的内容复制到Dockerfile文件中 FROM java:8 MAINTAINER ...
- 内存泄漏定位工具之 valgrind 使用
1 前言 前面介绍了 GCC 自带的 mtrace 内存泄漏检查工具,该篇主要介绍开源的内存泄漏工具 valgrind,valgrind 是一套 Linux 下,开放源代码的动态调试工具集合,能够检测 ...
- HTML知识点概括——一篇文章带你完全掌握HTML
HTML知识点概括 前端三件套分别是HTML3,CSS5,JavaScript 稍微介绍一下W3C标准: 结构化标准语言(HTML) 表现标准语言(CSS) 行为标准(DOM,JavaScript) ...
- 关于cpu体系架构的一些有趣的故事分享
从排查一次匪夷所思的coredump,引出各种体系架构的差异. 本文中的所有内容来自学习DCC888的学习笔记或者自己理解的整理,如需转载请注明出处.周荣华@燧原科技 1 背景 从全世界有记载的第一台 ...
- PaddleOCR系列(二)--hubserving & pdserving & hub install
一.各种部署方式特点及注意事项 简称 hubserving=PaddleHub Serving pdserving=PaddleHub Serving hub install =指通过paddlehu ...
- 基于ABP实现DDD--聚合和聚合根实践
在下面的例子中涉及Repository.Issue.Label.User这4个聚合根,接下来以Issue聚合为例进行分析,其中Issue聚合是由Issue[聚合根].Comment[实体].Iss ...