#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b)) #define ON_DEBUGG #ifdef ON_DEBUGG #define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin) #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io; #define int long long
inline int Gcd(int a, int b){
while(b ^= a ^= b ^= a %= b);
return a;
// if(!b) return a;
// return Gcd(b, a % b);
}
inline void Exgcd(int a, int b, int &x, int &y){
if(!b)
x = 1, y = 0;
else
Exgcd(b, a % b, y, x), y -= x * (a / b);
}
#undef int
int main(){
#define int long long
int a, b, m, n, L;
io >> a >> b >> m >> n >> L;
int A = n - m, B = L, C = a - b;
if(A < 0){
A = -A, C = -C;
}
int r = Gcd(A, B);
if(C % r){
printf("Impossible");
return 0;
}
A /= r, B /= r, C /= r;
//D_e(B);
int x, y;
Exgcd(A, B, x, y); // cout << x * C << endl;
// cout << x * C % B << endl;
// cout << x * C % B + B << endl;
printf("%lld", (x * C % B + B) % B); return 0;
}
/*
(n - m) * x + L * y = a - b A = n - m
B = L
C = A - B
*/

LuoguP1516 青蛙的约会 (Exgcd)的更多相关文章

  1. POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

    先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...

  2. POJ1061 青蛙的约会 exgcd

    这个题虽然很简单,但是有一个比较坑的地方,就是gcd不一定是1,有可能是别的数.所以不能return 1,而是return a; 题干: Description 两只青蛙在网上相识了,它们聊得很开心, ...

  3. LuoGuP1516 青蛙的约会 + 同余方程 拓展欧几里得

    题意:有两只青蛙,在一个圆上顺时针跳,问最少的相遇时间.   这个是同余方程的思路.可列出方程:(m-n)* X% L = y-x(mod L) 简化为 a * x = b (mod L)    (1 ...

  4. [luoguP1516] 青蛙的约会(扩展欧几里得)

    传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * ...

  5. P1516/bzoj1477 青蛙的约会

    青蛙的约会 exgcd 根据题意列出方程: 设所用时间为T,相差R圈时相遇 (x+T*m)-(y+T*n)=R*l 移项转换,得 T*(n-m)-R*l=x-y 设a=n-m,b=l,c=x-y,x_ ...

  6. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  7. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. BZOJ-1477 青蛙的约会 拓展欧几里德

    充权限之前做的...才来交 1477: 青蛙的约会 Time Limit: 2 Sec Memory Limit: 64 MB Submit: 369 Solved: 233 [Submit][Sta ...

随机推荐

  1. 一文学完Linux常用命令

    一.Linux 终端命令格式 1.终端命令格式 完整版参考链接:Linux常用命令完整版 command [-options] [parameter] 说明: command : 命令名,相应功能的英 ...

  2. 每天一个 HTTP 状态码 200

    200 OK 话不多说,这个状态码应该是最最最常用的了,无人不知,无人不晓: 就是表示请求成功的意思,你若安好,便是晴天. 摘自对于 https://www.google.com/ GET 请求的响应 ...

  3. MongoDB 主节点的选举原则

    每日一句 Life is like a shower. One wrong turn and you're in hot water. 生活就像淋浴,方向转错,水深火热. 概述 MongoDB在副本集 ...

  4. FileAPI

    FileAPI ```java File类的常见方法 1.创建. boolean createNewFile(); //创建文件 boolean mkdir();创建文件夹 boolean mkdir ...

  5. 基于云服务MRS构建DolphinScheduler2调度系统

    摘要:本文介绍如何搭建DolphinScheduler并运行MRS作业. 本文分享自华为云社区<基于云服务MRS构建DolphinScheduler2调度系统>,作者: 啊喔YeYe . ...

  6. 博弈论(nim游戏,SG函数)

    说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...

  7. vue大型电商项目尚品汇(前台篇)day05终结篇

    前台部分到此结束,一路走来还挺怀念,今天主要是对整个项目的完成做一个最后的收尾工作,对于功能上的需求没有什么了,主要就是项目上线的一些注意事项. 一.个人中心二级路由 当我们点击查看订单应该跳转到个人 ...

  8. Django-Model随笔

    Django数据库之Model 常用命令 生成迁移文件 python manage.py makemigrations 实行数据库迁移 python manage.py migrate 数据库表结构反 ...

  9. Puppeteer学习笔记 (1)- 什么是Puppeteer

    本文链接:https://www.cnblogs.com/hchengmx/p/11006263.html 1. phantomjs介绍 在介绍puppeteer之前必须介绍一下phantomjs,p ...

  10. vue大型电商项目尚品汇(后台终结篇)day06 重磅!!!

    自此整个项目前后台,全部搭建完毕. 今天是最后一天,内容很多,而且也比较常用,一个图标类数据可视化,一个后台的权限管理,都是很经典的类型. 一.数据可视化 1.简介 专门的一门学科,有专门研究这个的岗 ...