luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
题解时间
$ k $ 条边权为 $ 0 $ 的边。
是的,边权为零。
转化成选正好 $ k+1 $ 条链。
$ k \le 100 $ 的部分。
毫无疑问是树上打背包dp。
但具体设计还要注意一下。
一个问题是单点成链,这个要特判。
之后由于选择的都是链,所以每个点的度数不会超过2.
这样方程就出来了。
$ k \le n $ 的部分。
很明显不能背包了。
但“选正好k个求最大权值和”这个要求如果熟悉的话可能想到wqs二分。
打表试一下发现确实是上凸函数。
之后就按wqs二分的套路来,二分加权mid,求 $ dp_{x,k,deg} - mid * k $ 就完事了。
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=300011;
const int inf=0x3f3f3f3f;
const lint linf=0x3f3f3f3f3f3f3f;
struct sumireko{int to,ne;lint w;}e[N<<1];int he[N],ecnt;
void addline(int f,int t,lint w){e[++ecnt].to=t,e[ecnt].w=w;e[ecnt].ne=he[f],he[f]=ecnt;}
struct pat
{
lint v,k;pat(lint v=-linf,lint k=inf):v(v),k(k){}
bool operator<(const pat &p)const{return v==p.v?k>p.k:v<p.v;}
pat friend operator+(const pat &pa,const pat &pb){return pat(pa.v+pb.v,pa.k+pb.k);}
}dp[N][3],dg[3],dtmp;
int n,kap;lint km;
void dfs(int x,int f)
{
for(int i=he[x],t=e[i].to,w=e[i].w;i;i=e[i].ne,t=e[i].to,w=e[i].w)if(t!=f)
{
dfs(t,x);for(int p=0;p<3;p++) dg[p]=pat();
for(int j=0;j<3;j++)for(int p=0;p<3;p++) dg[j]=max(dg[j],dp[x][j]+dp[t][p]);
dg[1]=max(dg[1],dp[x][0]+max(dp[t][0]+pat(w-km,1),dp[t][1]+pat(w,0)));
dg[2]=max(dg[2],dp[x][1]+max(dp[t][0]+pat(w,0),dp[t][1]+pat(w+km,-1)));
memcpy(dp[x],dg,sizeof(dg));
}
}
void dpclr(){for(int i=1;i<=n;i++) dp[i][0]=pat(0,0),dp[i][1]=pat(),dp[i][2]=pat(-km,1);}
int main()
{
#ifdef RDEBUG
freopen("sample.in","r",stdin);
#endif
read(n),read(kap),kap++;for(int i=2,x,y,w;i<=n;i++) read(x),read(y),read(w),addline(x,y,w),addline(y,x,w);
lint ql=-1e8,qr=1e8,qm,qa;
while(ql<=qr)
{
qm=ql+qr>>1,km=qm;
dpclr(),dfs(1,0),dtmp=max(dp[1][0],max(dp[1][1],dp[1][2]));
if(dtmp.k==kap){printf("%lld\n",dtmp.v+km*kap);return 0;}
else if(dtmp.k>kap) ql=qm+1;
else qr=qm-1,qa=qm;
}
km=qa;
dpclr(),dfs(1,0),dtmp=max(dp[1][0],max(dp[1][1],dp[1][2]));
printf("%lld\n",dtmp.v+km*kap);
return 0;
}
}
int main(){return RKK::main();}
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)的更多相关文章
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- [八省联考2018]林克卡特树lct
题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- [BZOJ5252][八省联考2018]林克卡特树lct
bzoj(上面可以下数据) luogu description 在树上选出\(k\)条点不相交的链,求最大权值. 一个点也算是一条退化的链,其权值为\(0\). sol 别问我为什么现在才写这题 首先 ...
随机推荐
- Solution -「Gym 102798E」So Many Possibilities...
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...
- Solution -「JOISC 2021」「LOJ #3489」饮食区
\(\mathcal{Description}\) Link. 呐--不想概括题意,自己去读叭~ \(\mathcal{Solution}\) 如果仅有 1. 3. 操作,能不能做? ...
- MyBatis功能点二:plugins插件使用
MyBatis自定义插件使用步骤(已有pojo及mapper的基础上) 一.自定义插件,实现Interceptor接口 二.核心配置文件sqlMapConfig.xml文件增加插件相关内容 测试 测试 ...
- 认识并学会使用spring boot
1,什么是SpringBoot SpringBoot是Spring项目中的一个子工程,与我们所熟知的Spring-framework 同属于spring的产品,用一些固定的方式来构建生产级别的spri ...
- Ubuntu20重装nvidia驱动
终端:nvidia-smi 查看驱动信息 错误:NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver ...
- Django创建的第一个项目(2)
如何创建一个项目?安装好python,pycharm,Django之后,然后在pycharm的命令行django-admin startproject MyFirstPjt.MyFirstPjt ...
- Docker从入门到精通
1 容器简介1.1 什么是 Linux 容器1.2 容器不就是虚拟化吗1.3 容器发展简史2 什么是 Docker?2.1 Docker 如何工作?2.2 Docker 技术是否与传统的 Linux ...
- 拒绝踩雷!全能的BI软件非它莫属
BI工具现在是越来越火了,很多公司都会利用这些工具,提高工作效率.但是目前市面上的BI产品真的是越来越多,稍有不慎就会踩雷,那么我们应该要怎么选择这些BI工具呢?今天我为大家选了3款国内外口碑不错的B ...
- 【C# 线程】线程池 ThreadPool
Overview 如今的应用程序越来越复杂,我们常常需要使用<异步编程:线程概述及使用>中提到的多线程技术来提高应用程序的响应速度.这时我们频繁的创建和销毁线程来让应用程序快速响应操 ...
- Oracle子查询临时表
ORACLE 临时表,可以有两种类型的临时表:会话级临时表.事务级临时表. 会话级临时表: 因为这个临时表中的数据和你的当前会话有关系,当你当前 SESSION 不退出的情况下,临时表中的数据就还存在 ...