Flink域名处理
概述
最近做了一个小任务,要使用Flink处理域名数据,在4GB的域名文档中求出每个域名的顶级域名,最后输出每个顶级域名下的前10个子级域名。一个比较简单的入门级Flink应用,代码很容易写,主要用到的算子有FlatMap、KeyBy、Reduce。但是由于Maven打包问题,总是提示找不到入口类,卡了好久,最后也是成功解决了。
主体代码如下:
public class FlinkStreamingTopDomain {
public static void main(String[] args) throws Exception{
// 获取流处理运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 获取kafkaConsumer
FlinkKafkaConsumer<String> kafkaConsumer = FlinkUtil.getKafkaConsumer("ahl_test1", "console-consumer-72096");
// 从当前消费组下标开始读取
kafkaConsumer.setStartFromEarliest();
DataStreamSource text = env.addSource(kafkaConsumer);
// 算子
DataStream<Tuple2<String,String>> windowCount = text.flatMap(new FlatMap())
.keyBy(0).reduce(new Reduce());
//把数据打印到控制台
windowCount.print()
.setParallelism(16);//使用16个并行度
//注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
env.execute("streaming topDomain calculate");
}
}
算子
FlatMap
Flatmap是对一行字符进行处理的,官网上的解释如下
FlatMap
DataStream → DataStream
Takes one element and produces zero, one, or more elements. A flatmap function that splits sentences to words:
dataStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out)
throws Exception {
for(String word: value.split(" ")){
out.collect(word);
}
}
});
其实和Hadoop的Map差不多,都是把一行字符串进行处理,得到我们想要的<key,value>,不同之处在于Map处理后得到的是<key,values[]>。即Hadoop的Map操作会按key自动的将value处理成数组的形式,而Flink的FlatMap算子只会把每行数据处理成key、value。
下面是我处理业务的FlatMap代码
// FlatMap分割域名,并输出二元组<顶级域名,域名>
public static class FlatMap implements FlatMapFunction<String, Tuple2<String,String>> {
@Override
public void flatMap(String s, Collector<Tuple2<String, String>> out) throws Exception {
String[] values = s.split("\\^"); // 按字符^分割
if(values.length - 1 < 2) {
return;
}
String domain = values[2];
out.collect(new Tuple2<String,String>(ToolUtil.getTopDomain(domain),domain));
}
}
我这里把数据处理成了二元组形式,之后reduce也是对这个二元组进行处理。
KeyBy
先来看看官网的解释
KeyBy
DataStream → KeyedStream
Logically partitions a stream into disjoint partitions. All records with the same key are assigned to the same partition. Internally, keyBy() is implemented with hash partitioning. There are different ways to specify keys.
This transformation returns a KeyedStream, which is, among other things, required to use keyed state.
dataStream.keyBy(value -> value.getSomeKey()) // Key by field "someKey"
dataStream.keyBy(value -> value.f0) // Key by the first element of a Tuple
Attention:A type cannot be a key if:
1.it is a POJO type but does not override the hashCode() method and relies on the Object.hashCode() implementation.
2.it is an array of any type.
keyBy会按照一个keySelector定义的方式进行哈希分区,会将一个流分成多个Partition,相同key的会被分在同一个分区,经过keyBy的流变成KeyedStream。
需要注意的有两点:
1.pojo类型作为key,必须重写hashcode()方法
2.数组类型不能作为key
Reduce
官网的解释如下
Reduce
KeyedStream → DataStream
A "rolling" reduce on a keyed data stream. Combines the current element with the last reduced value and emits the new value.
A reduce function that creates a stream of partial sums:
keyedStream.reduce(new ReduceFunction<Integer>() {
@Override
public Integer reduce(Integer value1, Integer value2)
throws Exception {
return value1 + value2;
}
});
reduce是进行”滚动“处理的,即reduce方法的第一个参数是当前已经得到的结果记为currentResult,第二个参数是当前要处理的<key,value>。流式计算会一条一条的处理数据,每处理完一条数据就得到新的currentResult。
业务处理代码如下
// 拼接同一分区下的ip
public static class Reduce implements ReduceFunction<Tuple2<String,String>>{
@Override
public Tuple2<String,String> reduce(Tuple2 t1, Tuple2 t2) throws Exception {
String[] domains = t1.f1.toString().split("\\^");
if(domains.length == 10){
return t1;
}
t1.f1 = t1.f1.toString() + "^" + t2.f1.toString();
System.out.println(t1.f1 );
return t1;
}
}
连接socket测试
1.将主体代码里的kafka获取数据,改成socket获取数据
// int port;
// try {
// ParameterTool parameterTool = ParameterTool.fromArgs(args);
// port = parameterTool.getInt("port");
// } catch (Exception e){
// System.out.println("没有指定port参数,使用默认值1112");
// port = 1112;
// }
// 连接socket获取输入数据
// DataStreamSource<String> text = env.socketTextStream("192.168.3.221",port);
2.在服务器开启一个端口号:nc -l -p 1112
3.运行代码
4.服务器输入测试数据就可以实时的获取处理结果
连接kafka
正式
使用kafka命令创建主题
kafka-topics.sh --create --zookeeper IP1:2181 IP2:2181... --replication-factor 2 --partitions 16 --topic ahl_test
kafka建立topic需要先开启zookeeper
运行生产者jar包,用生产者读取数据
java -jar $jar包路径 $topic $path
测试
另外,还可以使用测试生产者实现和socket测试相同的效果
/kafka-console-producer.sh --broker-list slave3:9092 --topic ahl_test1
打包上传服务器
打包上传服务器注意不要使用idea提供的build方式,反正我使用build会一直报错找不到主类,即便我反编译jar包发现主类在里面,并且MF文件也有配置主类信息。这个问题卡了我很久,最后我使用mvn pakage的方式打包并运行成功,把我的打包插件贴出来帮助遇到和我相同问题的人
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<!-- <createDependencyReducedPom>false</createDependencyReducedPom>-->
<artifactSet>
<excludes>
<exclude>com.google.code.findbugs:jsr305</exclude>
<exclude>org.slf4j:*</exclude>
<exclude>log4j:*</exclude>
</excludes>
</artifactSet>
<filters>
<filter>
<!-- Do not copy the signatures in the META-INF folder.
Otherwise, this might cause SecurityExceptions when using the JAR. -->
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.ncs.flink.streaming.FlinkStreamingTopDomain</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
Flink运行指令为:
/home/soft/flink-1.12.0//bin/flink run -c com.ncs.flink.streaming.FlinkStreamingDomainJob /home/ahl/flink/situation-mapred-flink-0.0.1-SNAPSHOT.jar
或者可以访问Flink集群的8081端口,在提供的UI页面上传运行
Flink域名处理的更多相关文章
- Flink Program Guide (1) -- 基本API概念(Basic API Concepts -- For Java)
false false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-n ...
- 流式处理新秀Flink原理与实践
随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便 ...
- flink 入门
http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me ...
- 《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch
前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1 ...
- Flink 之 写入数据到 ElasticSearch
前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>—— Data Source 介绍 2.<从0到1学习F ...
- 技术选型:为什么批处理我们却选择了Flink
最近接手了一个改造多平台日志服务的需求,经过梳理,我认为之前服务在设计上存在缺陷.经过一段时间的技术方案调研,最终我们决定选择使用 Flink 重构该服务. 目前重构后的服务已成功经受了国庆节流量洪峰 ...
- 阿里云学生优惠Windows Server 2012 R2安装IIS,ftp等组件,绑定服务器域名,域名解析到服务器,域名备案,以及安装期间错误的解决方案
前言: 这几天终于还是按耐不住买了一个月阿里云的学生优惠.只要是学生,在学信网上注册过,并且支付宝实名认证,就可以用9块9的价格买阿里云的云服务ECS.确实是相当的优惠. 我买的是Windows S ...
- ContentProvider域名替换小工具
开发项目域名想怎么换就怎么换,就是这么任性! 这是一个很有意思的小工具! 这是一个方便开发人员和测试人员的小工具!! 吐槽: 一直在做Android开发,一直总有一个问题存在:做自己公司的apk开发时 ...
- ★Kali信息收集~2.Whois :域名信息
Web地址:http://whois.chinaz.com/ | http://www.whois.net/ 软件参数:whois 常用命令:whois 域名 (重点看whois server和R ...
随机推荐
- Python—高级函数
Python-高级函数 一.闭包 Python函数是支持嵌套的.如果在一个内部函数中对外部函数作用域(非全局作用域)的变量进行引用,那么内部函数就会被称为闭包.闭包需要满足如下3个条件: 存在于两个嵌 ...
- MySQL MHA 高可用集群部署及故障切换
MySQL MHA 高可用集群部署及故障切换 1.概念 2.搭建MySQL + MHA 1.概念: a)MHA概念 : MHA(MasterHigh Availability)是一套优秀的MySQL高 ...
- Java 给Word每一页设置不同文字水印效果
Word中设置水印时,可预设的文字或自定义文字设置为水印效果,但通常添加水印效果时,会对所有页面都设置成统一效果,如果需要对每一页或者某个页面设置不同的水印效果,则可以参考本文中的方法.下面,将以Ja ...
- SQL 在数据库中查找拥有此列名的所有表
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE COLUMN_NAME='Column' #"Column"为要查询 ...
- python迭代器对象及异常处理
内容概要 内置函数(可与匿名函数一起使用) 可迭代对象 迭代器对象 for循环内部原理 异常处理 内容详细 一.内置函数 # 1. map() 映射 l1 = [1, 3, 5, 7, 9] res ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- suse 12 二进制部署 Kubernetets 1.19.7 - 第06章 - 部署kube-apiserver组件
文章目录 1.6.部署kube-apiserver 1.6.0.创建kubernetes证书和私钥 1.6.1.生成kubernetes证书和私钥 1.6.2.创建metrics-server证书和私 ...
- 今天你花里胡哨了吗 --- 定制属于自己的linux ssh迎宾信息
请开始你的表演 linux-oz6w:~ # cat << 'eof' > /etc/profile.d/ssh-login-info.sh #!/bin/sh # 输出一个图像 e ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 ...
- 记一次慢查询优化sql
sql语句优化(慢查询日志) 最近,旧系统向新系统迁移工程刚刚结束.开发完成后,测试阶段也是好好休息了一把.接到一个需求,由于内部员工使用的网站部分功能加载时间很长,所以需要去优化系统的一些功能.大致 ...