本文参考

参考《Spark快速大数据分析》动物书中的第四章"键值对操作",本篇是对RDD转化操作和行动操作API归纳的最后一篇

RDD转化操作API归纳:https://www.cnblogs.com/kuluo/p/12545374.html

RDD行动操作API归纳:https://www.cnblogs.com/kuluo/p/12550938.html

pair RDD转化操作API归纳:https://www.cnblogs.com/kuluo/p/12558563.html

环境

idea + spark 2.4.5 + scala 2.11.12

RDD均通过SparkContext的parallelize()函数创建

countByKey()函数

目的:

对每个键对应的元素分别计数

代码:

/*
* (a,3) (b,5) (c,4) (d,2)
*/
val
testList1 = List("a a a b b b", "b b c c c", "c d d")
/*
* (a,5) (b,4)
*/
val
testList2 = List("a a a a a b b", "b b")

val testRdd1 = sc.parallelize(testList1)
val testRdd2 = sc.parallelize(testList2)

val map = testRdd1.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
  .union(testRdd2.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _))
  .countByKey()

for ((x, y) <- map) {

  println(s"($x, $y)")
}

输出:

(d, 1)

(a, 2)

(b, 2)

(c, 1)

注意:

This method should only be used if the resulting map is expected to be small, as the whole thing is loaded into the driver's memory. To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which returns an RDD[T, Long] instead of a map.

countByKey()函数会将结果全部加载到驱动器进程中,不适合结果集较大时使用

我们在源码中可以看到它调用了collect()函数

def countByKey(): Map[K, Long] = self.withScope { self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap }

因此在处理大数据量时,应当使用.mapValues(_ => 1L).reduceByKey(_ + _)两个函数返回一个RDD

collectAsMap()函数

目的:

collect()函数针对pair RDD的实现,将结果以映射表的形式返回

代码:

/*
* (a,3) (b,5) (c,4) (d,2)
*/
val
testList1 = List("a a a b b b", "b b c c c", "c d d")
/*
* (a,5) (b,4)
*/
val
testList2 = List("a a a a a b b", "b b")

val testRdd1 = sc.parallelize(testList1)
val testRdd2 = sc.parallelize(testList2)

val map = testRdd1.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
  .union(testRdd2.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _))
  .collectAsMap()

for ((x, y) <- map) {

  println(s"($x, $y)")
}

输出:

(b, 4)

(d, 2)

(a, 5)

(c, 4)

注意:

this doesn't return a multimap (so if you have multiple values to the same key, only one value per key is preserved in the map returned)

也正如本例所示,pair RDD中有重复的键时,collectByKey函数只会保留一个

因为内部调用了collect()函数,不适合结果集较大时使用

lookup()函数

目的:

返回给定键对应的所有值

代码:

/*
* (a,3) (b,5) (c,4) (d,2)
*/
val
testList1 = List("a a a b b b", "b b c c c", "c d d")
/*
* (a,5) (b,4)
*/
val
testList2 = List("a a a a a b b", "b b")

val testRdd1 = sc.parallelize(testList1)
val testRdd2 = sc.parallelize(testList2)

println(testRdd1.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
  .union(testRdd2.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _))
  .lookup("a"))

输出:

ArrayBuffer(3, 5)

Spark学习摘记 —— Pair RDD行动操作API归纳的更多相关文章

  1. Spark学习摘记 —— Pair RDD转化操作API归纳

    本文参考 参考<Spark快速大数据分析>动物书中的第四章"键值对操作",由于pair RDD的一些特殊操作,没有和前面两篇的API归纳放在一起做示例 前面的几个api ...

  2. Spark学习摘记 —— RDD行动操作API归纳

    本文参考 参考<Spark快速大数据分析>动物书中的第三章"RDD编程",前一篇文章已经概述了转化操作相关的API,本文再介绍行动操作API 和转化操作API不同的是, ...

  3. Spark学习摘记 —— RDD转化操作API归纳

    本文参考 在阅读了<Spark快速大数据分析>动物书后,大概了解到了spark常用的api,不过书中并没有给予所有api具体的示例,而且现在spark的最新版本已经上升到了2.4.5,动物 ...

  4. Spark学习之键值对(pair RDD)操作(3)

    Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建 ...

  5. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  6. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  7. spark中的pair rdd,看这一篇就够了

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第四篇文章,我们一起来看下Pair RDD. 定义 在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基 ...

  8. spark Pair RDD 基础操作

    下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...

  9. Spark学习笔记之RDD中的Transformation和Action函数

    总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pys ...

随机推荐

  1. 『无为则无心』Python基础 — 63、Python中的生成器

    目录 1.为什么要有生成器 2.创建生成器 (1)简单创建生成器 (2)生成器的使用 3.yield关键词 (1)yield关键词说明 (2)send()方法说明 4.使用yield实现斐波那契数列 ...

  2. C# init用法

    init是什么意思? init就 modreq([System.Runtime]System.Runtime.CompilerServices.IsExternalInit) 类型的缩写 modreq ...

  3. C# 模式匹配完全指南

    前言 自从 2017 年 C# 7.0 版本开始引入声明模式和常数模式匹配开始,到 2022 年的 C# 11 为止,最后一个板块列表模式和切片模式匹配也已经补齐,当初计划的模式匹配内容已经基本全部完 ...

  4. C++二维动态数组

    //创建 int **a=new int *[n]; for(i=0;i<n;i++) a[i]=new int[n]; // -- // 删除 for(i=0;i<n;i++) dele ...

  5. C语言刷二叉树(一)基础部分

    二叉树基础部分 144. 二叉树的前序遍历 方法一:递归 /** * Definition for a binary tree node. * struct TreeNode { * int val; ...

  6. think php 7天免登录

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Goland 时间转换的那些事

    Goland 时间转换的那些事 在项目的开发过程中遇到的一个很有意思的时间转换问题 例子 假设有一个需求,是从数据库获取到了一个时间,然后需要把时间延后一天,再返回时间戳 得到伪代码 t := &qu ...

  8. cookie、session和Storage

    概念: cookie:HTTP响应头的一部分,通过name=value的形式存储,主要用于保存登录信息.在设置的cookie过期时间之前一直有效,即使窗口或浏览器关闭. 存放数据大小为4K左右 .有个 ...

  9. 阿里云镜像站DNS——Chrome配置方法

    镜像下载.域名解析.时间同步请点击 阿里巴巴开源镜像站 DNS 简介 域名系统(服务)协议(DNS)是一种分布式网络目录服务,主要用于域名与 IP 地址的相互转换,以及控制因特网的电子邮件的发送. 阿 ...

  10. 域环境SID相同如何解决

    查看SID 进入命令行(WIN+R) 输入     whoami /user 什么是SID? sid相当于系统的身份证号,在域内有相同sid的计算机就相当于两个人共同有一个身份证号码,后果可想而知 建 ...