Java8新特性 - Stream流的应用

生命不息,写作不止

继续踏上学习之路,学之分享笔记

总有一天我也能像各位大佬一样

一个有梦有戏的人 @怒放吧德德

分享学习心得,欢迎指正,大家一起学习成长!

简介

stream是java8新出的抽象概念,他可以让你根据你期望的方式来处理集合数据,能够轻松的执行复杂的查找、过滤和映射数据等操作。Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。

Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。

元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。

对于一个集合,首先需要转成stream流,可以使用中间操作(filter过滤器、distinct去重、sorted排序等),但是最后是由终止操作结束(forEach遍历、collect转换、min,max最小最大等)。

Stream流的使用

生成流

在 Java 8 中, 集合接口有两个方法来生成流:

  • stream() − 为集合创建串行流,也就是采用单线程执行
  • parallelStream() − 为集合创建并行流,也就是采用多线程执行

    串行流:单线程的方式操作, 数据量比较少的时候使用

    并行流:多线程方式操作,数据量比较大的时候使用

    主要原理是:将一个大的任务拆分n多个小的子任务并行执行,

    最后在统计结果,有可能会非常消耗cpu的资源,确实可以

    提高效率,但是在数据量不多的时候就不要使用并行流。

Stream将list转换为Set

首先将list转成stream流,在通过collect(Collectors.toSet())的方法得到set集合。但是,直接这么操作,set集合是无法去重的。首先需要了解一下set的底层是如何防止重复的key的,我们都知道set底层依赖map防止重复的key,map集合底层依靠equals比较防止重复的key。所以我们需要在实体类型中去重写equals和hashcode的方法。

实体类:

package com.jdk8.demo.lambda.entity;

import java.util.HashMap;

/**
* @author: lyd
* @description: 实体
* @Date: 2022/10/5
*/
public class Student {
private String name;
private Integer score; // ... 省略get、set、构造方法 @Override
public boolean equals(Object obj) {
if (obj instanceof Student) {
return name.equals(((Student) obj).name) && score == ((Student) obj).score;
}
return false;
} @Override
public int hashCode() {
return score.hashCode();
}
}

测试代码

public static void main(String[] args) {
// Stream将list转换为Set
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
students.add(new Student("lss", 87));
/**
* set底层依赖map防止重复的key,map集合底层依靠equals比较防止重复的key
*/
Stream<Student> stream = students.stream();
Set<Student> collect = stream.collect(Collectors.toSet());
Iterator<Student> iterator = collect.iterator();
while (iterator.hasNext()) {
Student next = iterator.next();
System.out.println(next.getName() + " -> " + next.getScore());
}
}

结果:

Stream将list转换为Map

list集合转成stream流之后,通过<R, A> R collect(Collector<? super T, A, R> collector),在通过

Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper) {
return toMap(keyMapper, valueMapper, throwingMerger(), HashMap::new);
}

来声明key和value。如下代码,可以这么理解,stream.collect(Collectors.toMap(key, value)),key和value都是通过new Function<T, K>,对于key:T指的是Steam流的类型(既Student),而K代表的是map中的key值,因此这里是String类型的,在apply方法中去返回key值,通过student的名字来最为key,因此这里返回student.getName()。而第二个作为map的value,整体操作也是跟key差不多,主要还是需要注意的是,value存的是student,因此需要使用Student类型。

Map<String, Student> map = stream.collect(Collectors.toMap(new Function<Student, String>() {
@Override
public String apply(Student student) {
return student.getName();
}
}, new Function<Student, Student>() {
@Override
public Student apply(Student student) {
return student;
}
}));

最后都可以使用lambda表达式来

public static void main(String[] args) {
// Stream将list转换为Map
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
Map<String, Student> map = stream.collect(Collectors.toMap(student -> student.getName(), student -> student));
map.forEach((key, value) -> System.out.println("key: " + key + " -> value: " + value));
}

结果

Stream使用Reduce求和

通过使用stream的reduce方法,在里面去new BinaryOperator,代码如下

public static void main(String[] args) {
// Stream使用Reduce求和
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
Optional<Student> sum = stream.reduce((student, student2) -> {
Student sum1 = new Student("sum", student.getScore() + student2.getScore());
return sum1;
});
System.out.println(sum.get().getName() + " : " + sum.get().getScore());
}

结果

Stream使用Max和Min

实际上就是通过匿名内部类new Comparator()实现public int compare(Student o1, Student o2)比较方法。

public static void main(String[] args) {
// StreamMax和Min
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
Optional<Student> max = stream.max((o1, o2) -> o1.getScore() - o2.getScore());
System.out.println(max.get().getScore()); Stream<Student> stream2 = students.stream();
Optional<Student> min = stream2.min((o1, o2) -> o1.getScore() - o2.getScore());
// 可以使用方法引入更加简便
// Optional<Student> min = stream2.min(Comparator.comparingInt(Student::getScore));
System.out.println(min.get().getScore());
}

结果

Stream中Match匹配

  • anyMatch表示,判断的条件里,任意一个元素成功,返回true
  • allMatch表示,判断条件里的元素,所有的都是,返回true
  • noneMatch跟allMatch相反,判断条件里的元素,所有的都不是,返回true
public static void main(String[] args) {
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
boolean allMatch = stream.allMatch(student -> student.getScore() > 60);
System.out.println("allMatch: " + allMatch); Stream<Student> stream2 = students.stream();
boolean anyMatch = stream2.anyMatch(student -> student.getScore() > 60);
System.out.println("anyMatch: " + anyMatch); Stream<Student> stream3 = students.stream();
boolean noneMatch = stream3.noneMatch(student -> student.getScore() > 60);
System.out.println("noneMatch: " + noneMatch);
}

结果

Stream的过滤与遍历

stream的过滤是通过filter方法,通过实现匿名内部类new Predicate()的test方法,并且可以使用链式编程,持续过滤并且遍历,因为过滤不是终止运算。然而forEach是实现匿名内部类new Consumer()的accept方法。可以通过new的方式在通过idea来生成lambda表达式。

public static void main(String[] args) {
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
stream.filter(student -> student.getName() != null)
.filter(student -> student.getScore() > 70)
.forEach(student -> System.out.println("name: " + student.getName() + " score: " + student.getScore()));
}

结果

Stream的排序

不仅Arrays以及数组能够实现排序甚至是重写排序规则,Stream流也是提供了相应的方法。通过实现匿名内部类Comparator的compare方法。

public static void main(String[] args) {
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
stream.sorted(new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
return o1.getScore() - o2.getScore();
}
}).forEach(new Consumer<Student>() {
@Override
public void accept(Student student) {
System.out.println("name: " + student.getName() + " score: " + student.getScore());
}
});
/*lambda*/
stream.sorted((o1, o2) -> o1.getScore() - o2.getScore())
.forEach(student -> System.out.println("name: " + student.getName() + " score: " + student.getScore()));
/*方法引入*/
stream.sorted(Comparator.comparingInt(Student::getScore))
.forEach(student -> System.out.println("name: " + student.getName() + " score: " + student.getScore()));
}

结果

Stream的limit与skip

在SQL中可以通过limit进行分页数据的获取,在java8的stream流中,limit是获取集合中的前几个值,而skip是跳过几个元素。当我们需要获取第二到第三个元素的时候,可以通过skip(1)在通过limit(2)获取。

public static void main(String[] args) {
ArrayList<Student> students = new ArrayList<>();
students.add(new Student("lyd", 99));
students.add(new Student("lkj", 55));
students.add(new Student("llm", 67));
students.add(new Student("lss", 87));
Stream<Student> stream = students.stream();
stream.skip(1).limit(2).forEach(student -> System.out.println("name: " + student.getName() + " score: " + student.getScore()));
}

结果

工作繁忙也需要学习。

创作不易,如有错误请指正,感谢观看!记得点赞哦!

【Java8新特性】- Stream流的更多相关文章

  1. 这可能是史上最好的 Java8 新特性 Stream 流教程

    本文翻译自 https://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/ 作者: @Winterbe 欢迎关注个人微信公众 ...

  2. Java8新特性 Stream流式思想(二)

    如何获取Stream流刚开始写博客,有一些不到位的地方,还请各位论坛大佬见谅,谢谢! package cn.com.zq.demo01.Stream.test01.Stream; import org ...

  3. Java8新特性Stream流应用示例

    Java8新特性介绍 过滤集合 List<String> newList = list.stream().filter(item -> item != null).collect(C ...

  4. java8 新特性Stream流的应用

    作为一个合格的程序员,如何让代码更简洁明了,提升编码速度尼. 今天跟着我一起来学习下java 8  stream 流的应用吧. 废话不多说,直入正题. 考虑以下业务场景,有四个人员信息,我们需要根据性 ...

  5. Java8新特性 Stream流式思想(一)

    遍历及过滤集合中的元素使用传统方式遍历及过滤集合中的元素package cn.com.zq.demo01.Stream.test01.Stream; import java.util.ArrayLis ...

  6. Java8新特性 Stream流式思想(三)

    Stream接口中的常用方法 forEach()方法package cn.com.cqucc.demo02.StreamMethods.Test02.StreamMethods; import jav ...

  7. Java8 新特性 —— Stream 流式编程

    本文部分摘自 On Java 8 流概述 集合优化了对象的存储,大多数情况下,我们将对象存储在集合是为了处理他们.使用流可以帮助我们处理对象,无需迭代集合中的元素,即可直接提取和操作元素,并添加了很多 ...

  8. Java8新特性——stream流

    一.基本API初探 package java8.stream; import java.util.Arrays; import java.util.IntSummaryStatistics; impo ...

  9. java8 新特性 Stream流 分组 排序 过滤 多条件去重

    private static List<User> list = new ArrayList<User>(); public static void main(String[] ...

  10. Java8 新特性 Stream 无状态中间操作

    无状态中间操作 Java8 新特性 Stream 练习实例 中间无状态操作,可以在单个对单个的数据进行处理.比如:filter(过滤)一个元素的时候,也可以判断,比如map(映射)... 过滤 fil ...

随机推荐

  1. Taurus.MVC V3.0.3 微服务开源框架发布:让.NET 架构在大并发的演进过程更简单。

    前方: 开源地址:https://github.com/cyq1162/Taurus.MVC 上篇文章介绍过:工业制造行业的低代码开发平台思维架构图 规划中涉及到了微服务,近些天经过努力和不断的代码与 ...

  2. show create table底层流程跟踪

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 导语 SHOW CREATE TABLE语句用于为指定表/视图显示创建的语句,本文将简要描述如何在MySQL源码里跟踪和学 ...

  3. 最新30系显卡搭建paddle飞浆环境|含CUDA下载安装

    下载CUDA 通过这个链接可以下载任意CUDA版本:CUDA Toolkit Archive | NVIDIA Developer 我下载的是这一个:https://developer.downloa ...

  4. Reactive UI -- 反应式编程UI框架入门学习(二)

    前文Reactive UI -- 反应式编程UI框架入门学习(一)  介绍了反应式编程的概念和跨平台ReactiveUI框架的简单应用. 本文通过一个简单的小应用更进一步学习ReactiveUI框架的 ...

  5. 从 Airflow 到 Apache DolphinScheduler,有赞大数据开发平台的调度系统演进

    点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统 ...

  6. pnpm 的 workspace 实现 monorepo 工程

    前言 前端多个包管理的的方式一般都是采用monorepo的方式去管理,之前都是使用的lerna的workspace去管理.这段时间包管理切换到了pnpm上,它也有worksapce,可以支持monor ...

  7. Java中list集合自定义排序-2022新项目

    一.业务场景 为了加快首页数据查询的效率,因此将首页查询的数据大多数都放在了缓存中,包括各种list集合数据.对这些 从缓存中获取的数据做了一个兜底处理,如果从缓存中没有获取到数据,则直接从数据库中去 ...

  8. Luogu2375 [NOI2014]动物园 (KMP)

    写炸,上网,不同KMP形态. 无力,照该,一换写法就过. 横批:我是垃圾 求\(next\)时\(DP\)出\(num\),路径压缩防卡\(n^2\) AC #include <iostream ...

  9. "蔚来杯"2022牛客暑期多校训练营9 G Magic Spells【马拉车+哈希】

    四川今天又上热搜了,继南部疫情的未雨绸缪后,龙槽沟是真的倾盆大雨了.我没有兴趣虚伪矫情地对罹难的游人表达同情,因为人与人互不相通徒增谈资:我也没有兴趣居高临下地对擅闯的愚人表达不屑,因为你我皆为乌合之 ...

  10. 慢SQL,压垮团队的最后一根稻草!

    一.什么是慢 SQL 什么是慢SQL?顾名思义,运行时间较长的 SQL 语句即为慢 SQL! 那问题来了,多久才算慢呢? 这个慢其实是一个相对值,不同的业务场景下,标准要求是不一样的. 我们都知道,我 ...