NC16663 [NOIP2004]合并果子

题目

题目描述

​ 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

​ 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

​ 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入描述

输入包括两行,第一行是一个整数 \(n(1\leq n\leq 10000)\) ,表示果子的种类数。第二行包含 \(n\) 个整数,用空格分隔,第 \(i\) 个整数 \(a_i(1 \leq a_i \leq 20000)\)是第 \(i\) 种果子的数目。

输出描述

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于\(2^{31}\)。

示例1

输入

3
1 2 9

输出

15

备注

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

题解

思路

知识点:队列,贪心。

此题用优先队列能很容易解答,复杂度是 \(O(n\log n)\) 。这里用队列实现,利用了合并方式固定的条件,实现了一组单调的队列,而不需要用 \(\log n\) 花费排序,循环的复杂度是 \(O(n)\),包括开始排序的总复杂度是 \(O(n \log n)\) ,但常数比优先队列小很多。

显然,因为合并次数是固定的,先合并的果堆重复计算次数就多,所以选最小的两堆合并,因此先从小到大排序,全部入队后开始合并。

注意到,从小到大选取合并出的新果堆必然是递增的,因此可以考虑用一个新队列存放新的果堆,然后每次在两个队头的选两次最小值。因为最小的两个果堆,无论从哪个取的,都一定比之前两个大,所以所有新果堆都可以放在新队列队尾,而不破坏新队列里的递增性。

最后循环 \(n\) 次并累加即可。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int a[10007];

int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 0;i < n;i++) cin >> a[i];
sort(a, a + n);
queue<int> q1, q2;
for (int i = 0;i < n;i++) q1.push(a[i]);
int ans = 0;
for (int i = 0;i < n;i++) {
int sum = 0;
for (int j = 1;j <= 2;j++) {
if (q2.empty() || !q1.empty() && q1.front() < q2.front()) {
sum += q1.front();
q1.pop();
}
else {
sum += q2.front();
q2.pop();
}
}
ans += sum;
q2.push(sum);
}
cout << ans << '\n';
return 0;
}

NC16663 [NOIP2004]合并果子的更多相关文章

  1. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  2. [luoguP1090][Noip2004]合并果子

                                            合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...

  3. 合并果子(NOIP2004)

    合并果子(NOIP2004)[问题描述]在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.每一次合并,多多可以把两堆果子合并到一起,消耗的体 ...

  4. [Noip2004][Day ?][T?]合并果子(?.cpp)

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  6. 加强版:合并果子[NOIP2004]

    题目 链接:https://ac.nowcoder.com/acm/contest/26887/1001 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...

  7. 合并果子 (codevs 1063) 题解

    [问题描述] 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和 ...

  8. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

  9. 【noip 2004】 合并果子

    noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...

随机推荐

  1. 技术管理进阶——一线Leader怎么做?经理的速成宝典

    原创不易,求分享.求一键三连 本期培训材料关注公众号后回复:经理培训,获得 前段时间有个同学问我有没有一线Leader的速成培训课程,很好的问题,首先我们需要定义一下什么是小Leader: 所谓小Le ...

  2. Node.js躬行记(18)——半吊子的可视化搭建系统

    我们组维护的管理后台会接到很多开发需求,每次新开页面,就会到处复制黏贴相关代码. 并且还会经常性的翻阅文档,先在书签或地址栏输入WIKI地址,然后找到那一份说明文档,再定位到要看的组件位置. 虽然单人 ...

  3. 【面试普通人VS高手系列】死锁的发生原因和怎么避免

    一个去阿里面试的小伙伴私信我说:今天被一个死锁的问题难到了. 平常我都特意看了死锁这块的内容,但是回答的时候就想不起来. 这里可能存在一个误区,认为技术是要靠记的. 大家可以想想,平时写代码的时候,这 ...

  4. Django/SQL server 配置实现(附下载安装)

    连接方案1: conn = pymssql.connect(host='127.0.0.1', port=1433, user='sa', password='password', database= ...

  5. Django学习——图书相关表关系建立、基于双下划线的跨表查询、聚合查询、分组查询、F查询、Q查询、admin的使用、使用脚本调用Django、Django查看源生sql

    0 图书相关表关系建立 1.5个表 2.书籍表,作者表,作者详情表(垂直分表),出版社表,书籍和作者表(多对多关系) 一对一 多对多 本质都是一对多 外键关系 3.一对一的关系,关联字段可以写在任意一 ...

  6. 拖动元素调换位置——sortable.js

    使用简介: https://github.com/SortableJS/Sortable https://segmentfault.com/a/1190000008209715 /**! * Sort ...

  7. linux中MySQL主从配置(Django实现主从读写分离)

    一 linux中MySQL主从配置原理(主从分离,主从同步) mysql主从配置的流程大体如图: 1)master会将变动记录到二进制日志里面: 2)master有一个I/O线程将二进制日志发送到sl ...

  8. 【HarmonyOS学习笔记】Slider组件实现图形可调旋转

    哈喽大家好我是厚脸皮的小威 之前刚刚用华为的IDE跑通"HELLO,WORLD" 趁热又想去试试看跑一下基于TS拓展API接口的Slider组件,去实现图片的放大和缩小 凭借着大学 ...

  9. 题解 P1276 校门外的树(增强版)

    前言 本蒟蒻重学线段树,发现了这道题可以用线段树做. 虽然数据范围很小可以直接暴力,但由于在练习线段树所以打算用线段树写这道题. 本题解针对已经有线段树基础的巨佬,不懂线段树原理的话可以学习线段树后再 ...

  10. 优秀开源平台,前后端分离快速开发平台,一站式多端开发(PC+APP)

    JNPF平台架构介绍 JNPF快速开发平台采用前后端分离技术.采用B/S架构开发,形成一站式开发多端(APP+PC)使用. PC端版本介绍 第一个当然是当下热门的.net core了,运行环境为Vis ...