NC16663 [NOIP2004]合并果子
NC16663 [NOIP2004]合并果子
题目
题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入描述
输入包括两行,第一行是一个整数 \(n(1\leq n\leq 10000)\) ,表示果子的种类数。第二行包含 \(n\) 个整数,用空格分隔,第 \(i\) 个整数 \(a_i(1 \leq a_i \leq 20000)\)是第 \(i\) 种果子的数目。
输出描述
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于\(2^{31}\)。
示例1
输入
3
1 2 9
输出
15
备注
对于30%的数据,保证有n<=1000:
对于50%的数据,保证有n<=5000;
对于全部的数据,保证有n<=10000。
题解
思路
知识点:队列,贪心。
此题用优先队列能很容易解答,复杂度是 \(O(n\log n)\) 。这里用队列实现,利用了合并方式固定的条件,实现了一组单调的队列,而不需要用 \(\log n\) 花费排序,循环的复杂度是 \(O(n)\),包括开始排序的总复杂度是 \(O(n \log n)\) ,但常数比优先队列小很多。
显然,因为合并次数是固定的,先合并的果堆重复计算次数就多,所以选最小的两堆合并,因此先从小到大排序,全部入队后开始合并。
注意到,从小到大选取合并出的新果堆必然是递增的,因此可以考虑用一个新队列存放新的果堆,然后每次在两个队头的选两次最小值。因为最小的两个果堆,无论从哪个取的,都一定比之前两个大,所以所有新果堆都可以放在新队列队尾,而不破坏新队列里的递增性。
最后循环 \(n\) 次并累加即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
int a[10007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 0;i < n;i++) cin >> a[i];
sort(a, a + n);
queue<int> q1, q2;
for (int i = 0;i < n;i++) q1.push(a[i]);
int ans = 0;
for (int i = 0;i < n;i++) {
int sum = 0;
for (int j = 1;j <= 2;j++) {
if (q2.empty() || !q1.empty() && q1.front() < q2.front()) {
sum += q1.front();
q1.pop();
}
else {
sum += q2.front();
q2.pop();
}
}
ans += sum;
q2.push(sum);
}
cout << ans << '\n';
return 0;
}
NC16663 [NOIP2004]合并果子的更多相关文章
- NOIP2004合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- [luoguP1090][Noip2004]合并果子
合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...
- 合并果子(NOIP2004)
合并果子(NOIP2004)[问题描述]在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.每一次合并,多多可以把两堆果子合并到一起,消耗的体 ...
- [Noip2004][Day ?][T?]合并果子(?.cpp)
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- [NOIP2004] 提高组 洛谷P1090 合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- 加强版:合并果子[NOIP2004]
题目 链接:https://ac.nowcoder.com/acm/contest/26887/1001 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...
- 合并果子 (codevs 1063) 题解
[问题描述] 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和 ...
- 代码源 每日一题 分割 洛谷 P6033合并果子
题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...
- 【noip 2004】 合并果子
noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...
随机推荐
- 基础的CSS描绘测试
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- 数据传输POST心法分享,做前端的你还解决不了这个bug?
背景 随时随地给大家提供技术支持的葡萄又来了.这次的事情是这样的,提供demo属于是常规操作,但是前两天客户突然反馈压缩传输模块抛出异常,具体情况是压缩内容传输到服务端后无法解压. 由于代码没有发生任 ...
- Python GDAL矢量转栅格详解
前言:挺久没有更新博客了,前段时间课程实验中需要用代码将矢量数据转成栅格,常见的点栅格化方法通过计算将点坐标(X,Y)转换到格网坐标(I,J),线栅格化方法主要有DDA算法.Bresenham算法等, ...
- springmvc04-数据处理
数据处理 我们把它分为三种情况来分析,这样我们对于数据处理会有更好的理解 1.提交的域名称和处理方法的参数名一致 提交数据 : http://localhost:8080/hello?name=xi ...
- python学习-Day30
目录 今日内容详细 作业讲解 设计模式 单例模式 实现思想 编写 pickle模块 今日内容详细 作业讲解 编写元类规定对象的所有数据值转大写 eg: obj.name = 'jason' print ...
- shiro550反序列学习
Shiro550 shiro550和fastjson作为攻防演练的利器,前面学习了fastjson的相关利用和回显,本篇主要来学习一下shiro550的漏洞原理. 1.漏洞原因 在 Shiro < ...
- CoreWCF 1.0.0 发布,微软正式支持WCF
2022年4月28日,我们达到了一个重要的里程碑,并发布了CoreWCF的1.0.0版本.对Matt Connew (微软WCF团队成员)来说,这是5年前即 2017年1月开始的漫长旅程的结束.Mat ...
- [还不会搭建博客吗?]centos7系统部署hexo博客新手入门-进阶,看这一篇就够了
@ 目录 *本文说明 请大家务必查看 前言 首先介绍一下主角:Hexo 什么是 Hexo? 环境准备 详细版 入门:搭建步骤 安装git: 安装node: 安装Hexo: 进阶:hexo基本操作 发布 ...
- ZooKeeper 基本原理你懂了么?
点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 作者:阿凡卢来源:cnblogs.com/luxiaox ...
- 一款高速的NET版的离线免费OCR
PaddleOCR.Onnx 一款基于Paddle的OCR,项目使用ONNX模型,速度更快.本项目同时支持X64和X86的CPU上使用.本项目是一个基于PaddleOCR的C++代码修改并封装的.NE ...