【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治
【BZOJ10492】[NOI2007]货币兑换Cash
Description
.png)
.png)
Input
Output
只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。
Sample Input
1 1 1
1 2 2
2 2 3
Sample Output
HINT
.png)
题解:好吧该啃的硬骨头还是要啃的~
如果感觉像斜率优化,那么我们来试着列方程吧!显然,我们的所有操作肯定是:倾巢买入-倾巢卖出-倾巢买入...那么DP方程如下:
设f[i]表示在第i天,将手中所有金券都卖完,所能拥有的最多钱数,那么
$f[i]=f[i-1]\\f[i]=\min(f[j]/(a[j]\times rate[j]+b[j])*(a[i]*rate[j]+b[i]))$
将括号拆开
$f[i]=a[i]*f[j]/(a[j]\times rate[j]+b[j])*rate[j]+b[i]*f[j]/(a[j]\times rate[j]+b[j])$
感觉不太好看,设$g[i]=f[j]/(a[j]\times rate[j]+b[j])$试试?如果还是感觉不好看,因为a[i],b[i]都是常数,两边都除个a[i]试试?是不是好看多了?
$g[j]*rate[j]=-{b[i]\over a[i]}*g[j]+{f[i]\over a[i]}$
看起来推式子好像挺简单的,但是x和k都不单调啊,于是我们就想找出一种办法使得我们永远都只需要用一些单调的x来更新一些单调的k,这就涉及到排序,怎么办?cdq分治呗!
注意:我们整个分治过程会想办法让某段区间分别满足:按x升序,按编号(时间)升序,按k降序,下面请留意。
具体做法:先将正个序列按k降序排序,然后开始分治。在分治区间[l,r]时,我们先按时间进行归并,将时间在[l,mid]的放在左边,然后递归处理左区间,在处理左区间的结束时候顺便按x升序排个序(一会再说)。现在我们来处理区间[l,r],发现此时的[l,mid]满足x升序,[mid+1,r]满足k降序,岂不是正好可以用斜率优化?然后,我们递归处理右区间(也顺便按x升序排个序),最后,左右区间都已经按x升序排完序了,归并起来就好了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=100010;
struct node
{
double A,B,f,g,k,rate,org;
double x(){return g;}
double y(){return g*rate;}
}p[maxn],pp[maxn];
int n;
int q[maxn],h,t;
double ans;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
bool cmpg(node a,node b)
{
return a.g<b.g;
}
bool cmpk(node a,node b)
{
return a.k>b.k;
}
double getk(int a,int b)
{
if(fabs(p[a].x()-p[b].x())<1e-12) return -2147483647.0;
else return (p[a].y()-p[b].y())/(p[a].x()-p[b].x());
}
void solve(int l,int r)
{
if(l==r)
{
p[l].f=max(p[l].f,p[l-1].f);
p[l].g=p[l].f/(p[l].A*p[l].rate+p[l].B);
return ;
}
int mid=l+r>>1,i,j,h1=l,h2=mid+1;
double mf=0;
for(i=l;i<=r;i++)
{
if(p[i].org<=mid) pp[h1++]=p[i];
else pp[h2++]=p[i];
}
for(i=l;i<=r;i++) p[i]=pp[i];
solve(l,mid);
h=1,t=0;
for(i=l;i<=mid;i++)
{
while(h<t&&getk(q[t],q[t-1])<getk(i,q[t])) t--;
q[++t]=i;
mf=max(mf,p[i].f);
}
for(i=mid+1;i<=r;i++)
{
while(h<t&&getk(q[h+1],q[h])>p[i].k) h++;
p[i].f=max(p[i].f,p[q[h]].f/(p[q[h]].A*p[q[h]].rate+p[q[h]].B)*(p[i].A*p[q[h]].rate+p[i].B));
p[i].f=max(p[i].f,mf);
p[i].g=p[i].f/(p[i].A*p[i].rate+p[i].B);
}
solve(mid+1,r);
for(h1=l,h2=mid+1,i=l;i<=r;i++)
{
if(h1<=mid&&(h2>r||p[h1].x()<p[h2].x())) pp[i]=p[h1++];
else pp[i]=p[h2++];
}
for(i=l;i<=r;i++) p[i]=pp[i];
}
int main()
{
scanf("%d%lf",&n,&p[1].f);
int i;
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&p[i].A,&p[i].B,&p[i].rate);
p[i].k=-p[i].B/p[i].A,p[i].org=i;
}
sort(p+1,p+n+1,cmpk);
solve(1,n);
for(i=1;i<=n;i++) ans=max(ans,p[i].f);
printf("%.3lf",ans);
return 0;
}
【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治的更多相关文章
- [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5838 Solved: 2345[Submit][Sta ...
- [BZOJ1492] [NOI2007]货币兑换Cash 斜率优化+cdq/平衡树维护凸包
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5907 Solved: 2377[Submit][Sta ...
- BZOJ1492: [NOI2007]货币兑换Cash 【dp + CDQ分治】
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MB Submit: 5391 Solved: 2181 [Submit][S ...
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
- 【BZOJ 1492】 [NOI2007]货币兑换Cash 斜率优化DP
先说一下斜率优化:这是一种经典的dp优化,是OI中利用数形结合的思想解决问题的典范,通常用于优化dp,有时候其他的一些决策优化也会用到,看待他的角度一般有两种,但均将决策看为二维坐标系上的点,并转化为 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- BZOJ 1492: [NOI2007]货币兑换Cash 斜率优化 + splay动态维护凸包
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
- [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)
[BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...
- BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...
随机推荐
- Java防止SQL注入的几个途径
java防SQL注入,最简单的办法是杜绝SQL拼接,SQL注入攻击能得逞是因为在原有SQL语句中加入了新的逻辑,如果使用 PreparedStatement来代替Statement来执行SQL语句,其 ...
- Storm sql 简单测试
准备工作: 1.安装Kafka,启动,以及创建相应的topic 1.启动kafka bin/kafka-server-start.sh config/server.properties > /d ...
- 在HTML页面中实现一个简单的Tab
参考:http://blog.sina.com.cn/s/blog_6cccb1630100m23i.html HTML页面代码如下: <!DOCTYPE html PUBLIC "- ...
- Sql中常用的创建表 约束 主外键 增删改查的语句
创建数据库 USE master; GO --日记数据库 create database DiaryBase on ( name=DiaryBase_Dat,--逻辑名称 FILENAME='c:\D ...
- Odoo 11 Backend
Table of Contents 命令入口 服务器 启动server thread 模式 prefork 模式 gevent模式 wsgi 应用 响应 客户端请求 xmlrpc web http路由 ...
- 10分钟-jQuery-基础选择器
1.id 选择器 jquery能使用CSS选择器来操作网页中的标签元素.假设你想要通过一个id号去查找一个元素,就能够使用例如以下格式的选择器: $("#my_id") 当中#my ...
- UVA - 434 Matty's Blocks
题意:给你正视和側视图,求最多多少个,最少多少个 思路:贪心的思想.求最少的时候:由于能够想象着移动,尽量让两个视图的重叠.所以我们统计每一个视图不同高度的个数.然后计算.至于的话.就是每次拿正视图的 ...
- ROS当中添加第三方库
下文以serial 库为依据讲解第三方库在ROS下面的配置. 参考文献:http://blog.csdn.net/u011853479/article/details/51263590 ros中使 ...
- Doker容器之间连接
第一个应用容器 $ sudo docker run --name=mysql_client1 --link=mysql_server:db -t -i kongxx/mysql_client /usr ...
- layout_gravity和gravity的区别
受不了了,用一遍查一遍...根本记不住,来这里记录一下 layout_gravity是子view相对于父view的位置,比如说,在button中设置了layout_gravity="cent ...