This chapter covers
 What recommenders are, within Mahout
 A first look at a recommender in action
 Evaluating the accuracy and quality of
recommender engines
 Evaluating a recommender on a real
data set: GroupLens

1.mahout in Action2.2第一个例子

Running a first recommender engine

数据:
第一个数字是用户ID 第二个是书的ID,第三个是用户对书的评分,1-5 越高,表示用户越喜欢
1,101,5.0
1,102,3.0
1,103,2.5

2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0

3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0

4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0

5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

1-5 用户对不同书的喜好程度如下图所示:


直觉上看这个图,用户1和用户5喜好很相似,都喜欢101,对102,103只是喜欢那么一点点。可以说非常相似。1和4其次,也很相似,都很喜欢101,不怎么喜欢103。
1和2的喜好貌似完全相反,1喜欢101,而2不喜欢。等等。。。

那么。考察用户1,我们推荐什么书给他呢?

101 102 103他已经知道了,在剩下的书中,我们选取哪几个呢?直觉告诉我们,1和4,5号用户很相似,因此,我们应该用4.5的喜好推测1的喜好,进行推荐。那么4,5都很喜欢104,106,我们就应该推荐这两本书给1.

人的内心是这么思考的,代码怎么表示出来呢?



publicstaticvoid main(String[] args)throwsException{
File modelFile =null;
if(args.length >0)
modelFile =newFile(args[0]);
if(modelFile ==null||!modelFile.exists())
modelFile =newFile("intro.csv");加载文件
if(!modelFile.exists()){
System.err.println("Please, specify name of file, or put file 'input.csv' into current directory!");
System.exit(1);
}
DataModel model =newFileDataModel(modelFile);
 
UserSimilarity similarity =newPearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =
newNearestNUserNeighborhood(2, similarity, model);
 
Recommender recommender =newGenericUserBasedRecommender(
model, neighborhood, similarity);
 
List<RecommendedItem> recommendations =
recommender.recommend(1,1);推荐,对于用户1 推荐一个
 
for(RecommendedItem recommendation : recommendations){
System.out.println(recommendation);
}
 
}




程序输出:

RecommendedItem [item:104, value:4.257081]

结果说明 推荐104 因为相应的评分为4.25

下一章节讲述怎么评价这个结果,这个和我们做生物研究实验一样,就是检验自己的结果的可信性。如果检验可信度高,就可以认为我们的理论是正确的。我们生物经常用到的是T检验,K检验等等,都是经典的理论。




Charles 于2015-12-17 Phnom Penh



版权说明:
本文由Charles Dong原创,本人支持开源以及免费有益的传播,反对商业化谋利。
CSDN博客:http://blog.csdn.net/mrcharles
个人站:http://blog.xingbod.cn
EMAIL:charles@xingbod.cn

mahout in Action2.2-给用户推荐图书(1)-直观分析和代码的更多相关文章

  1. mahout in Action研读(1)-给用户推荐图书

    1.mahout in Action2.2第一个例子   Running a first recommender engine   数据: 第一个数字是用户ID 第二个是书的ID,第三个是用户对书的评 ...

  2. mahout in Action2.2-给用户推荐图书(2)-分析对用户推荐书目的结果

    2.2.3 Analyzing the output 在之前的程序运行结果中我们得到的结果输出是: RecommendedItem [item:104, value:4.257081] 程序要求选择一 ...

  3. mahout in Action2.2-给用户推荐图书(3)-评价推荐系统

    推荐系统引擎是一个工具,一种回答问题的手段,"对用户来讲什么是最好的推荐?",在研究回答的前先研究一下这个问题.一个好的推荐的准确含义是什么?如何知道推荐系统是如何生成推荐的?下面 ...

  4. 【Machine Learning】Mahout基于协同过滤(CF)的用户推荐

    一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l  GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l  GenericI ...

  5. 推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比

    一.定义 UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品 ItemCF:推荐那些和他之前喜欢的物品类似的物品 根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的 ...

  6. 【推荐图书】+ 基于Nios II的嵌入式SoPC系统设计与Verilog开发实例+C#入门经典等

    [推荐图书]+ 基于Nios II的嵌入式SoPC系统设计与Verilog开发实例+C#入门经典等 3赞 发表于 2016/7/4 21:14:12 阅读(1921) 评论(3) 初次接触FPGA,到 ...

  7. linux 系统内核空间与用户空间通信的实现与分析<转>

    linux 系统内核空间与用户空间通信的实现与分析 2 评论: 陈鑫 (chen.shin@hotmail.com), 自由软件爱好者, 南京邮电学院电子工程系 2004 年 7 月 01 日 内容 ...

  8. Linux 系统内核空间与用户空间通信的实现与分析

    本文转载自:https://www.ibm.com/developerworks/cn/linux/l-netlink/index.html 多数的 Linux 内核态程序都需要和用户空间的进程交换数 ...

  9. GitHub Python项目推荐|瓦力Devops开源项目代码部署平台持续部署

    GitHub Python项目推荐|walle - 瓦力 Devops开源项目代码部署平台 项目热度 标星(star):8418 (很不错的实用项目,大神作品,建议关注) 标星趋势 关注(watch) ...

随机推荐

  1. 安装rackspace private cloud --2 overview

    Target hosts 包含以下 network bridges: LXC internal lxcbr0: 必须的,自动生成,containers的外网连接,不连接到host上任何物理/逻辑接口, ...

  2. 机器学习(七)—Adaboost 和 梯度提升树GBDT

    1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类 ...

  3. ll 1164 线段树

    http://www.ifrog.cc/acm/problem/1164 1164 - 战舰萝莉 Time Limit:2s Memory Limit:256MByte Submissions:85S ...

  4. 02-THREE.JS 辅助线使用

    <!DOCTYPE html> <html> <head> <title></title> <script src="htt ...

  5. ionic3 教程(一)安装和配置

    // 安装(失败的话 Mac 尝试使用 sudo,Windows 尝试管理员身份运行 cmd) $ npm install -g cordova ionic // 安装后可以验证一下 ionic cl ...

  6. 分布式_理论_08_Consistent Hash(一致性哈希算法)

    一.前言 五.参考资料 1.分布式理论(八)—— Consistent Hash(一致性哈希算法)

  7. LeetCode OJ:Basic Calculator(基础计算器)

    Implement a basic calculator to evaluate a simple expression string. The expression string may conta ...

  8. 【SQL查询】查询的值为空时,给出默认值_NVL函数

    格式为: NVL( string1, replace_with) 功能:如果string1为NULL,则NVL函数返回replace_with的值,否则返回string1的值. 引申一下,此NVL的作 ...

  9. Tomcat 优化方案 和 配置详解

    转载: http://blog.csdn.net/yi2672379417/article/details/51442229

  10. Linux终端录屏与播放 script 命令

    本文由Suzzz原创,发布于 http://www.cnblogs.com/Suzzz/p/4107700.html ,转载请保留此声明. 有时候可能想要记录在终端的所有操作包括输出等,将来作为视频播 ...