关系型数据库排序算法和数据结构以及关联查询

1. Merge sort

理解merge sort算法将有助于更好地理解数据库join操作 - merge join

  • 算法逻辑

    将2个有序的大小为N/2的队列合并为N元素的有序队列

    上面是排序最后的8元素数组, 仅仅需要重复一次2个4元素的数据排序(4元素已经是有序的了):

    • 比较2个数组中的第一个元素
    • 将较小的一个元素放在有序的8元素队列中
    • 然后再从较小的元素所在的4元素数组中拿到下一个元素
    • 将第三步中拿到的元素与第一步比较中较大的元素再比较, 将较小的一个元素放在有序的8元素队列中
    • 重复上面的步骤, 直到其中一个数据比较完成

    下面是实现的伪代码:

      array mergeSort(array a)
    if(length(a)==1)
    return a[0];
    end if //递归调用
    [left_array right_array] := split_into_2_equally_sized_arrays(a);
    array new_left_array := mergeSort(left_array);
    array new_right_array := mergeSort(right_array); //将2个小的有序的数组合并为一个大的
    array result := merge(new_left_array,new_right_array);
    return result;

    Merge sort将一个问题分为小的问题, 然后找到小问题的结果, 最终得到原始问题的结果. 其实是一个两阶段的算法:

    • 分裂阶段: 大数组被分裂为小数组
    • 排序阶段: 小数组合并为有序的大数组

    • 分裂阶段

      在分裂阶段, 数组被分裂为单一的数组需要3步, 这里的复杂度是log(N) (N=8, log(N)=3)

    • 排序阶段

      排序阶段, 成本是N=8的操作.

      • 第一步需要4次merge, 每次花费2个操作
      • 第二步需要2次merge, 每次花费4个操作
      • 第三步需要2次merge, 每次花费8个操作

      log(N)步merge, 总的花费N*log(N)个操作.

2. Arrary

现在流行的数据库都提供用数组来存储表, 例如: 堆组织表(Heap-organized tables), 索引组织表(Index-organized tables), 但这并不解决快通过多列来速搜索特定的条件;

3. Tree

  • B-Tree

    在二叉搜索树中,

    • 所有的节点键值都大于左边子树的节点键值
    • 所有的节点键值都小于右边子树的节点键值

    这个树有N=15个元素, 如果搜索208的过程是:

    • 从根节点开始(key=136), 由于136<208, 因此应该搜索跟节点右侧的子树
    • 由于398>208, 因此应该搜索节点398左侧的子树
    • 由于250>208, 因此应该搜索节点250左侧的子树
    • 由于200<208, 因此应该搜索节点200右侧的子树, 但是节点200没有右侧子树, 因此值208不存在

    搜索的算法复杂度是log(N)

  • B+Tree Index

    B-Tree最大的问题是无法做range query(范围搜索), 另外如果搜索2个值, 就需要进行完成的2次跟节点开始扫描的过程.

    在B+Tree搜索中,

    • 只有叶子节点存储数据信息
    • 其他非叶子节点只是搜索中的一个路由信息

    B+Tree的节点是有序的以及平衡的, 这也引来了一个问题: B+Tree的分裂

4. Hash table

用hash table来快速查找一个值是非常有效的, 一个好的hash函数可以做到搜索复杂度是O(1); 理解hash table可以更好的理解数据库表链接操作 - hash join; 这个数据结构在数据库中被用来存储内部的东西(譬如: lock table或者buffer pool);

构建一个hash table需要定义:

  • 元素的key值

  • key的hash function (计算hash key的函数, 可以得到元素的位置信息, 一般叫做桶(buckets))

  • key的比较函数 (当找到对应的bucket后, 需要在bucket中查找元素)

    最大的挑战是定义一个好的hash function, 得到包含尽可能少元素的buckets串;

Arrary vs hash table

  • hash table可以**half loaded in memory, 剩下的buckets可以在disk上
  • 而数组则需要在内存中使用连续的空间, 如果需要加载一个large table, 那么很难做到有足够的内存空间
  • hash table可以选择所需要的key

5. 关联查询

传统的关系型数据数据有3种常见的关联操作: Merge Join, Hash Join, Nested Loop Join.

  • Nested loop join

    • Outer relation的每一行都会去扫描Inner relation, 输出匹配的记录

    伪代码如下:

      	nested_loop_join(array outer, array inner)
    for each row a in outer
    for each row b in inner
    if (match_join_condition(a,b))
    writer_result_in_output(a,b)
    end if
    end for
    end for

    因此这是一个嵌套迭代, 时间复杂度是O(N*M) //加入outer relation有N行, inner relation有M行

    在磁盘I/O上, outer relation里N行中的每一行, inner loop都需要读取inner relation里M行, 这个算法需要从磁盘读取N+N*M行, 如果inner relation足够小, 可以cache在buffer里, 那么只需要读取磁盘M+N行.

    上面这个算法是最基本的, 但是如果inner relation过大而无法cache到memory, 下面这个是对磁盘更友好的算法:

    • 代替一行一行的读取
    • 每次批量读取并且cache到memory
    • 在内存cache的批量数据里比较outer bunch的每一行是否匹配inner bunch, 输出匹配纪录
    • 再从disk load新的批量数据进入memory
    • 直到disk上没有数据

    伪代码如下:

      	// improved version to reduce the disk I/O.
    nested_loop_join_v2(file outer, file inner)
    for each bunch ba in outer
    // ba is now in memory
    for each bunch bb in inner
    // bb is now in memory
    for each row a in ba
    for each row b in bb
    if (match_join_condition(a,b))
    writer_result_in_output(a,b)
    end if
    end for
    end for
    end for
    end for

    这个版本的时间复杂度没变, 但是减少了磁盘操作.

  • Hash join

    Hash join将会更复杂一些, 但是在很多情况下比Nested Loop Join有更少的成本开销

    • 得到所有inner relation的元素
    • 在内存中构建hash table
    • 一个一个得到outer relation的元素
    • 用hash funcation计算每一个outer relation的元素, 找到关联的inner relation bucket
    • 比较bucket中的元素是否与outer relation中的匹配, 匹配则输出

    时间复杂度: (M/X)*N + cost_to_create_hash_table(M) + cost_of_hash_function(N), 如果hash function足够好, 得到足够小的buckets, 那么时间复杂度是: O(M+N)

  • Merge join

    Merge Join是唯一会产生排序操作的链接操作

    • Sort Join Operation: 根据join key来排序
    • Merge Join Operation: 将排序的结果merge在一起

    Sort

    前面已经描述过sort过的过程了, 在Merge Join中往往很多时候数据结果集已经是有序的, 譬如:

    • 如果表本身就是有序的, 譬如IOT表(index-organized table)的join列
    • join条件是有索引的
    • 基于有序的中间结果的join

    Merge Join

    Merge Join本身和前面的Merge Sort是很类似的, 但这次, 只是在2个集合中挑选相等的元素出来, 而不是从2个集合中拿所有的元素.

    • 比较2个集合中当前的元素(当前指的是首次, 第一次)
    • 如果相等, 结果中输出元素, 下来比较2个集合中下一个元素
    • 如果不相等, 在较小的元素的集合中去下一个元素来比较(由于集合都是有序的)
    • 重复上述, 直到任一集合中到最后一个元素

    如果2个集合都是有序的, 那么时间复杂度是: O(M+N);

    如果集合需要排序, 那么时间复杂度是: O(N*Log(N) + M*Log(M));

      mergeJoin(relation a, relation b)
    relation output
    integer a_key:=0;
    integer b_key:=0; while (a[a_key]!=null or b[b_key]!=null)
    if (a[a_key] < b[b_key])
    a_key++;
    else if (a[a_key] > b[b_key])
    b_key++;
    else //Join predicate satisfied
    //i.e. a[a_key] == b[b_key]
    //count the number of duplicates in relation a integer nb_dup_in_a = 1;
    while (a[a_key]==a[a_key+nb_dup_in_a])
    nb_dup_in_a++ integer nb_dup_in_b = 1;
    while (a[a_key]==a[a_key+nb_dup_in_b])
    nb_dup_in_b++ //write the duplicates in output for (int i = 0; i<nb_dup_a; i++)
    for (int j = 0;i<nb_dup_a; i++)
    write_result_in_output(a[a_key+i], b[b_key+j])
    a_key=a_key + nb_dup_in_a-1;
    b_key=b_key + nb_dup_in_b-1; end if
    end while

哪一种Join算法是最好的呢?

几个关键因素:

  • 空闲内存大小: 没有足够的内存基本可以和强大的hash join说再见了(hash join至少需要full in-memory)
  • 2个数据集合的大小: 如果是一个大表和一个小表, nested loop join将会比hash join快(hash join会有更大代价的构建hash table); 如果是2个大表, nested loop join将是非常耗cpu的
  • join条件是否存在index: 如果2个集合均有B+Tree, 那么merge join将会是更好的选择
  • 结果集是否需要排序: 即使处理的是乱序的数据集合, 由于结果集需要有序, 可能也会使用成本更高的merge join
  • 数据集是否有有序的: 如果是, 那么merge join将是最佳的选择
  • 数据分布: join条件的列是否是倾斜的(譬如join条件是last name, 但是很多人拥有相同的last name), 那么使用hash join将是很有效的

[Oracle] 关系型数据库排序算法和数据结构以及关联查询的更多相关文章

  1. swift排序算法和数据结构

    var arrayNumber: [Int] = [2, 4, 6, 7, 3, 8, 1] //冒泡排序 func maopao(var array: [Int]) -> [Int] { fo ...

  2. 数据结构和算法(Golang实现)(25)排序算法-快速排序

    快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...

  3. 数据结构和算法(Golang实现)(18)排序算法-前言

    排序算法 人类的发展中,我们学会了计数,比如知道小明今天打猎的兔子的数量是多少.另外一方面,我们也需要判断,今天哪个人打猎打得多,我们需要比较. 所以,排序这个很自然的需求就出来了.比如小明打了5只兔 ...

  4. 数据结构和算法(Golang实现)(19)排序算法-冒泡排序

    冒泡排序 冒泡排序是大多数人学的第一种排序算法,在面试中,也是问的最多的一种,有时候还要求手写排序代码,因为比较简单. 冒泡排序属于交换类的排序算法. 一.算法介绍 现在有一堆乱序的数,比如:5 9 ...

  5. 数据结构和算法(Golang实现)(20)排序算法-选择排序

    选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...

  6. 数据结构和算法(Golang实现)(21)排序算法-插入排序

    插入排序 插入排序,一般我们指的是简单插入排序,也可以叫直接插入排序.就是说,每次把一个数插到已经排好序的数列里面形成新的排好序的数列,以此反复. 插入排序属于插入类排序算法. 除了我以外,有些人打扑 ...

  7. 数据结构和算法(Golang实现)(22)排序算法-希尔排序

    希尔排序 1959 年一个叫Donald L. Shell (March 1, 1924 – November 2, 2015)的美国人在Communications of the ACM 国际计算机 ...

  8. 数据结构和算法(Golang实现)(23)排序算法-归并排序

    归并排序 归并排序是一种分治策略的排序算法.它是一种比较特殊的排序算法,通过递归地先使每个子序列有序,再将两个有序的序列进行合并成一个有序的序列. 归并排序首先由著名的现代计算机之父John_von_ ...

  9. 数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序

    优先队列及堆排序 堆排序(Heap Sort)由威尔士-加拿大计算机科学家J. W. J. Williams在1964年发明,它利用了二叉堆(A binary heap)的性质实现了排序,并证明了二叉 ...

随机推荐

  1. python基础之正则表达式和re模块

    正则表达式 就其本质而言,正则表达式(或 re)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被编译成一系列的字节码,然后由用 ...

  2. Java文件 ---RandomAccessFile示例

    RandomAccessFile是用来访问那些保存数据记录的文件的,你就可以用seek( )方法来访问记录,并进行读写了.这些记录的大小不必相同:但是其大小和位置必须是可知的.但是该类仅限于操作文件 ...

  3. CodeForces 873F Forbidden Indices 后缀数组

    忘了当时怎么做的了,先把代码贴上,保存一下后缀数组模板. #include <cstdio> #include <cstring> #include <algorithm ...

  4. IOS多网卡抓包

    linux下libpcap支持从多网卡抓包,设置为any即可 在IOS或者mac上就无法通过次方法抓取所有网卡报文 1.通过设置libevent事件回调,每个网卡注册读事件, fd通过 pd = pc ...

  5. 【Dual Support Vector Machine】林轩田机器学习技法

    这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1 ...

  6. webdriver--设置元素等待

    sleep():脚本执行到某一位置时“睡一会”,再继续执行:参数的单位是s:sleep方法由python的time模块提供,有两种引入和使用方式 import time time.sleep(5) f ...

  7. 洛谷P2678跳石头(提高)

    题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点. 在起点和终点之间,有 N 块岩石( ...

  8. Kd-Tree&Ransac笔记

    关于sift资源总结: http://blog.csdn.net/masibuaa/article/details/9191309 两个比较好的资源: https://my.oschina.net/k ...

  9. 第二阶段团队冲刺-four

    昨天: 绘制logo. 今天: 用servlet完成名单打印功能. 遇到的问题: servlet中的获得的路径不是想要的.

  10. static_cast AND dynamic_cast

    类型转换是一种机制,让程序员能够暂时或永久性改变编译器对对象的解释.注意,这并不意味着程序员改变了对象本身,而只是改变了对对象的解释. 在很多情况下,类型转换是合理的需求,可解决重要的兼容问题.因此, ...