原文链接:https://blog.csdn.net/sunhaoning/article/details/68924625
StamppedLock是Java 8中引入的一种新的锁机制。读写锁虽然分离了读和写的功能,使得读与读之间可以完全并发。但是,读和写之间依然是冲突的。读锁会完全阻塞写锁,它使用的依然是悲观锁的策略,如果有大量的读线程,它也有可能引起写线程的“饥饿”。
而StampedLock提供了一种乐观的读策略。这种乐观策略的锁非常类似无锁的操作,使得乐观锁完全不会阻塞写线程。

1)StampedLock使用示例

class Point {

private double x, y;

private final StampedLock sl = new StampedLock();

void move(double deltaX, double deltaY) { // an exclusively locked method

long stamp = sl.writeLock();

try {

x += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

}

}

double distanceFromOrigin() { // A read-only method

long stamp = sl.tryOptimisticRead();

double currentX = x, currentY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currentX = x;

currentY = y;

} finally {

sl.unlockRead(stamp);

}

}

return Math.sqrt(currentX * currentX + currentY * currentY);

}
 
上述代码出自JDK的官方文档。它定义了一个Point类,内部有两个元素x和y,表示点的坐标。第3行定义了StampedLock锁。第15行定义的distanceFromOrigin()方法是一个只读方法,它只会读取Point的x和y坐标。在读取时,首先使用了StampedLock.tryOptimisticRead()方法。这个方法表示试图尝试一次乐观读。它会返回一个类似于时间的邮戳整数stamp。这个stamp就可以作为这一次锁获取的凭证。
接着,在第17行,读取x和y的值。当然,这时并不确定这个x和y是否是一致的(在读取x的时候,可能其他线程改写了y的值,使得currentX和currentY处于不一致的状态)。因此,我们必须在18行,使用validate()方法,判断这个stamp是否在读过程发生期间被修改过。如果stamp没有被修改过,则认为这次读取的过程中,可能被其他线程改写了数据,因此,有可能出现了脏读。如果出现这种情况,我们可以像处理CAS操作那样在一个死循环中一直使用乐观读,知道成功为止。
也可以升级锁的级别。在本例中,我们升级乐观锁的级别,将乐观锁变为悲观锁。在第19行,当判断乐观读失败后,使用readLock()获得悲观的读锁,并进一步读取数据。如果当前对象正在被修改,则读锁的申请可能导致线程挂起。
写入的情况可以参考第5行定义的move()函数。使用writeLock()函数可以申请写锁。这里的含义和读写锁是类似的。
在退出临界区时,不要忘记释放写锁(第11行)或者读锁(第24行)。

2)StampedLock的小陷阱

StampedLock内部实现时,使用类似于CAS操作的死循环反复尝试的策略。在它挂起线程时,使用的是Unsafe.park()函数,而park()函数在遇到线程中断时,会直接返回(不同于Thread.sleep(),它不会抛出异常)。而在StampedLock的死循环逻辑中,没有处理有关中断的逻辑。因此,这就会导致阻塞在park()上的线程被中断后,会再次进入循环。而当退出条件得不到满足时,就会发生疯狂占用CPU的情况。下面演示了这个问题:
public class StampedLockCUPDemo {

static Thread[] holdCpuThreads = new Thread[3];

static final StampedLock lock = new StampedLock();

public static void main(String[] args) throws InterruptedException {

new Thread() {

public void run(){

long readLong = lock.writeLock();

LockSupport.parkNanos(6100000000L);

lock.unlockWrite(readLong);

}

}.start();

Thread.sleep(100);

for( int i = 0; i < 3; ++i) {

holdCpuThreads [i] = new Thread(new HoldCPUReadThread());

holdCpuThreads [i].start();

}

Thread.sleep(10000);

for(int i=0; i<3; i++) {

holdCpuThreads [i].interrupt();

}

}

private static class HoldCPUReadThread implements Runnable {

public void run() {

long lockr = lock.readLock();

System.out.println(Thread.currentThread().getName() + " get read lock");

lock.unlockRead(lockr);

}

}

}
 
在上述代码中,首先开启线程占用写锁(第7行),为了演示效果,这里使用写线程不释放锁而一直等待。接着,开启3个读线程,让它们请求读锁。此时,由于写锁的存在,所有读线程都会被最终挂起。
读线程因为park()的操作进入了等待状态,这种情况是正常的。
而在10秒钟以后(代码在17行执行了10秒等待),系统中断了这3个读线程,之后,就会发现,CPU占用率极有可能会飙升。这是因为中断导致park()函数返回,使线程再次进入运行状态。
此时,这个线程的状态是RUNNABLE,这是我们不愿意看到的,它会一直存在并耗尽CPU资源,直到自己抢占到了锁。
 

3)有关StampedLock的实现思想

StampedLock的内部实现是基于CLH锁的。CLH锁是一种自旋锁,它保证没有饥饿发生,并且可以保证FIFO的服务顺序。
CLH锁的基本思想如下:锁维护一个等待线程队列,所有申请锁,但是没有成功的线程都记录在这个队列中。每一个节点(一个节点代表一个线程),保存一个标记位(locked),用于判断当前线程是否已经释放锁。
当一个线程试图获得锁时,取得当前等待队列的尾部节点作为其前序节点,并使用类似如下代码判断前序节点是否已经成功释放:
while(pred.locked) {
}
只要前序节点(pred)没有释放锁,则表示当前线程还不能继续执行,因此会自旋等待(很多synchronized里面的代码只是一些很简单的代码,执行时间非常快,此时等待的线程都加锁可能是一种不太值得的操作,因为线程阻塞涉及到用户态和内核态切换的问题。既然synchronized里面的代码执行得非常快,不妨让等待锁的线程不要被阻塞,而是在synchronized的边界做忙循环,这就是自旋。如果做了多次忙循环发现还没有获得锁,再阻塞,这样可能是一种更好的策略。)。
反之,如果前序线程已经释放锁,则当前线程可以继续执行。
释放锁时,也遵循这个逻辑,线程会将自身节点的locked位置标记为false,那么后续等待的线程就能继续执行了。
在StampedLock内部,为维护一个等待链表队列:

static final class WNode {

volatile WNode prev;

volatile WNode next;

volatile WNode cowait; // list of linked readers

volatile Thread thread; // non-null while possibly parked

volatile int status; // 0, WAITING, or CANCELLED

final int mode; // RMODE or WMODE

WNode(int m, WNode p) { mode = m; prev = p; }

}

/** Head of CLH queue */

private transient volatile WNode whead;

/** Tail (last) of CLH queue */

private transient volatile WNode wtail;
上述代码中,WNode为链表的基本元素,每一个WNode表示一个等待线程。字段whead和wtail分别指向等待链表的头部和尾部。
另外一个重要的字段为state:
private transient volatile long state;
字段state表示当前锁的状态。它是一个long型,有64位,其中,倒数第8位表示写锁状态,如果该位为1,表示当前由写锁占用。
对于一次乐观读的操作,它会执行如下操作:
public long tryOptimisticRead() {

long s;

return (((s = state) & WBIT) == 0L) ? (s & SBITS) : 0L;

}
一次成功的乐观读必须保证当前锁没有写锁占用。其中WBIT用来获取写锁状态位,值为0x80。如果成功,则返回当前state的值(末尾7位清零,末尾7位表示当前正在读取的线程数量)。
如果在乐观读后,有线程申请了写锁,那么state的状态就会改变:
public long writeLock() {

long s, next; // bypass acquireWrite in fully unlocked case only

return ((((s = state) & ABITS) == 0L &&

U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?

next : acquireWrite(false, 0L));

}
上述代码中第4行,设置写锁位为1(通过加上WBIT(0x80))。这样,就会改变state的取值。那么在乐观锁确认(validate)时,就会发现这个改动,而导致乐观锁失败。
public boolean validate(long stamp) {

// See above about current use of getLongVolatile here

return (stamp & SBITS) == (U.getLongVolatile(this, STATE) & SBITS);

}
 
上述validate()函数比较当前stamp和发生乐观锁时取得的stamp,如果不一致,则宣告乐观锁失败。
乐观锁失败后,则可以提升锁级别,使用悲观读锁。
public long readLock() {

long s, next; // bypass acquireRead on fully unlocked case only

return ((((s = state) & ABITS) == 0L &&

U.compareAndSwapLong(this, STATE, s, next = s + RUNIT)) ?

next : acquireRead(false, 0L));

}
悲观读会尝试设置state状态(第4行),它会将state加1(前提是读线程数量没有溢出,对于读线程数量溢出的情况,会使用辅助的readerOverflow进行统计),用于统计读线程的数量。如果失败,则进入acquireRead()二次尝试锁获取。
在acquireRead()中,线程会在不同条件下进行若干次自旋,试图通过CAS操作获得锁。如果自旋宣告失败,则会启用CLH队列,将自己加到队列中。之后再进行自旋,如果发现自己成功获得了读锁,则会进一步把自己cowait队列中的读线程全部激活(使用Usafe.unpark()方法)。如果最终依然无法成功获得读锁,则会使用Unsafe.park()方法挂起当前线程。
方法acquireWrite()和acquireRead()也非常类似,也是通过自旋尝试、加入等待队列、直至最终Unsafe.park()挂起线程的逻辑进行的。释放锁时与加锁动作相反,以unlockWrite()为例:
public void unlockWrite(long stamp) {

WNode h;

if (state != stamp || (stamp & WBIT) == 0L)

throw new IllegalMonitorStateException();

state = (stamp += WBIT) == 0L ? ORIGIN : stamp;

if ((h = whead) != null && h.status != 0)

release(h);

}
上述代码第5行,将写标记位清零,如果state发生溢出,则退回到初始值。
接着,如果等待队列不为空,则从等待队列中激活一个线程(绝大部分情况下是第1个等待线程)继续执行(第7行)。

StampedLock原理的更多相关文章

  1. Java 8 StampedLock解决同步问题

    Java 8新特性探究(十)StampedLock将是解决同步问题的新宠 JDK8中StampedLock原理探究 深入理解StampedLock及其实现原理 JDK1.8 StampedLock源码 ...

  2. Java并发编程原理与实战三十九:JDK8新增锁StampedLock详解

    1.StampedLock是做什么的? ----->它是ReentrantReadWriteLock 的增强版,是为了解决ReentrantReadWriteLock的一些不足.   2.Ree ...

  3. 同步中的四种锁synchronized、ReentrantLock、ReadWriteLock、StampedLock

    目录 1.synchronized同步锁 2.ReentrantLock重入锁 3.ReadWriteLock读写锁 4.StampedLock戳锁(目前没找到合适的名字,先这么叫吧...) 5.总结 ...

  4. Java并发编程笔记之StampedLock锁源码探究

    StampedLock是JUC并发包里面JDK1.8版本新增的一个锁,该锁提供了三种模式的读写控制,当调用获取锁的系列函数的时候,会返回一个long 型的变量,该变量被称为戳记(stamp),这个戳记 ...

  5. Lock、synchronized和ReadWriteLock,StampedLock戳锁的区别和联系以及Condition

    https://www.cnblogs.com/RunForLove/p/5543545.html 先来看一段代码,实现如下打印效果: 1 2 A 3 4 B 5 6 C 7 8 D 9 10 E 1 ...

  6. 同步中的四种锁synchronized、ReentrantLock、ReentrantReadWriteLock、StampedLock

    为了更好的支持并发程序,JDK内部提供了多种锁.本文总结4种锁. 1.synchronized同步锁 使用: synchronized本质上就2种锁: 1.锁同步代码块 2.锁方法 可用object. ...

  7. Java并发(8)- 读写锁中的性能之王:StampedLock

    在上一篇<你真的懂ReentrantReadWriteLock吗?>中我给大家留了一个引子,一个更高效同时可以避免写饥饿的读写锁---StampedLock.StampedLock实现了不 ...

  8. Java 并发编程-不懂原理多吃亏(送书福利)

    作者 | 加多 关注阿里巴巴云原生公众号,后台回复关键字"并发",即可参与送书抽奖!** 导读:并发编程与 Java 中其他知识点相比较而言学习门槛较高,从而导致很多人望而却步.但 ...

  9. AQS底层原理分析

    J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发场景中使用的组件.比如线程池.阻塞队列.计时器.同步器.并发集合等等.并发包的作者是大 ...

随机推荐

  1. 并发编程之五--ThreadLocal

    ThreadLocal是什么 早在JDK 1.2的版本中就提供java.lang.ThreadLocal,ThreadLocal为解决多线程程序的并发问题提供了一种新的思路.使用这个工具类可以很简洁地 ...

  2. Python类(五)-反射

    反射即通过字符串映射或修改程序运行时的状态.属性.方法 有4个方法: hasattr(): hasattr(object,string):object为实例化的对象,string为字符串 判断对象ob ...

  3. spring Annotation

    使用注解替代xml 在前几章的笔记基础上添加使用注解的形式 1.配置applicationContext 添加context schema <?xml version="1.0&quo ...

  4. Django的Model使用

    创建模型 使用Django的模型主要注意两个方面:字段的类型和方法的重写.这里用一个例子来说明,其中包含了常用的字段类型和如何重写方法. from django.db import models cl ...

  5. The Independent JPEG Group's JPEG software Android源码中 JPEG的ReadMe文件

    The Independent JPEG Group's JPEG software========================================== README for rele ...

  6. springmvc 注解式开发 处理器方法的返回值

    1.返回void -Ajax请求 后台: 前台: 返回object中的数值型: 返回object中的字符串型: 返回object中的自定义类型对象: 返回object中的list: 返回object中 ...

  7. JAVA基础知识总结7(抽象类 | 接口)

    抽象类: abstract 1.抽象:不具体,看不明白.抽象类表象体现. 2.在不断抽取过程中,将共性内容中的方法声明抽取,但是方法不一样,没有抽取,这时抽取到的方法,并不具体,需要被指定关键字abs ...

  8. linux下vtune使用

    安装:http://www.cnblogs.com/jiu0821/p/5943533.html 终端输入amplxe-gui,打开vtune界面. 点击new project,进入project p ...

  9. 业务逻辑:五、完成认证用户的动态授权功能 六、完成Shiro整合Ehcache缓存权限数据

    一. 完成认证用户的动态授权功能 提示:根据当前认证用户查询数据库,获取其对应的权限,为其授权 操作步骤: 在realm的授权方法中通过使用principals对象获取到当前登录用户 创建一个授权信息 ...

  10. Java Annotation详解

    元数据的作用 如果要对于元数据的作用进行分类,目前还没有明确的定义,不过我们可以根据它所起的作用,大致可分为三类: l          编写文档:通过代码里标识的元数据生成文档. l         ...