题目描述

LYK有一张无向图G={V,E},这张无向图有n个点m条边组成。并且这是一张带权图,不仅有边权还有点权。LYK给出了一个子图的定义,一张图G'={V',E'}被称作G的子图,当且仅当:

·G'的点集V'包含于G的点集V。

·对于E中的任意两个点a,b∈V',当(a,b)∈E时,(a,b)一定也属于E',并且连接这两个点的边的边权是一样的。

LYK给一个子图定义了它的价值,它的价值为:点权之和与边权之和的比.LYK想找到一个价值最大的非空子图,所以它来找你帮忙啦.数据保证任意两个点之间最多一条边相连,并且不存在自环。

数据范围:

1<=n,m<=100000,1<=ai,z<=1000。

题解:

      ①考虑两个联通块AB由一条边权为为w的边连接形成新的子图的时候:

      ②设他们的原来的点权边权和分别为:n1,n2,e1,e2。

      ③原来两个子图的答案分别为:n1/e1,n2/e2

      ④现在新形成的子图答案为:n1+n2/(e1+e2+w)

      ⑤又因为(设n1/e1 >= n2/e2):   n1/e1 >= n1+n2/(e1+e2) >= n2/e2

      ⑥最终结论:最优方案出现在仅有一条边和两个点的子图中。

#include<cstdio>
#include<algorithm>
using namespace std;double ans;
int A,B,C,n,m,a[100005],i;
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
scanf("%d%d",&n,&m);
for (i=1; i<=n; i++) scanf("%d",&a[i]);
for (i=1; i<=m; i++)
{
scanf("%d%d%d",&A,&B,&C);
ans=max(ans,(a[A]+a[B])/(C+0.0));
}
printf("%.2f\n",ans);
return 0;
}//czy020202

总会,注定灵魂最深处,
容不下尘埃飘落每个缝隙。————汪峰《重叠》

【CZY选讲·一道图论好题】的更多相关文章

  1. 【CZY选讲·一道图论神题】

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删掉,但删这个点是需要代价的 ...

  2. 【CZY选讲·吃东西】

    题目描述 一个神秘的村庄里有4家美食店.这四家店分别有A,B,C,D种不同的美食.LYK想在每一家店都吃其中一种美食.每种美食需要吃的时间可能是不一样的.现在给定第1家店A种不同的美食所需要吃的时间 ...

  3. 【CZY选讲·Hja的棋盘】

    题目描述 Hja特别有钱,他买了一个×的棋盘,然后Yjq到这个棋盘来搞事.一开始所有格子都是白的,Yjq进行次行操作次列操作,所谓一次操作,是将对应的行列上的所有格子颜色取反.现在Yjq希望搞事之后 ...

  4. 【CZY选讲·次大公因数】

    题目描述 给定n个数ai,求sgcd(a1,a1),sgcd(a1,a2),…,sgcd(a1,an). 其中sgcd(x,y)表示x和y的次大公因数.若不存在次大公因数,sgcd(x,y)=-1 ...

  5. 【CZY选讲·黑白染色】

    题目描述 给出平面上n 个点,试将他们黑白染色,要求染色后无法用一条直线把黑白完全分开. 随便输出一种方案. 数据范围 n<=100000 题解:       ①点数很多,但是可以发现至多需 ...

  6. 清北学堂模拟赛d1t4 一道图论好题(graph)

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,不仅有边权还有点权. LYK给出了一个子图的定义,一张图G’={V’,E’}被称作G的子图,当且仅当 ·G ...

  7. 【CZY选讲·最大子矩阵和】

    题目描述 有一个n*m的矩阵,恰好改变其中一个数变成给定的常数P,使得改变后的这个矩阵的最大子矩阵最大. 数据范围 n,m<=300. 题解:    ①如果没有p,那么二维矩阵和就是一维最长 ...

  8. 【CZY选讲·Yjq的棺材】

    题目描述 Yjq想要将一个长为宽为的矩形棺材(棺材表面绝对光滑,所以棺材可以任意的滑动)拖过一个L型墓道. 如图所示,L型墓道两个走廊的宽度分别是和,呈90°,并且走廊的长度远大于. 现在Hja ...

  9. 【CZY选讲·逆序对】

    题目描述 LYK最近在研究逆序对. 这个问题是这样的. 一开始LYK有一个2^n长度的数组ai. LYK有Q次操作,每次操作都有一个参数k.表示每连续2^k长度作为一个小组.假设 n=4,k= ...

随机推荐

  1. JQuery实现父级选择器(广告实现)

    效果图如下: HTML代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  2. LeetCode969. 煎饼排序

    问题:969. 煎饼排序 给定数组 A,我们可以对其进行煎饼翻转:我们选择一些正整数 k <= A.length,然后反转 A 的前 k 个元素的顺序.我们要执行零次或多次煎饼翻转(按顺序一次接 ...

  3. vue学习笔记-:class

    当items.state为true时使用class='rad2state',否则为rad2(默认).

  4. php图片压缩-高清晰度

    php高清晰度无损压缩 经常会用到把上传的大图片压缩,特别是体积,在微信等APP应用上,也默认都是有压缩的,那么,怎么样对图片大幅度压缩却仍能保持较高的清晰度呢? 压缩通常是有按比例缩放,和指定宽度压 ...

  5. [Noip2016]愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

  6. urllib使用二

    urlopen方法返回一个html 对html使用info()方法返回HTTPMessage对象实例 import urllib def print_list(lists): for i in lis ...

  7. Weblogic Linux jar包安装

    环境/工具: 系统:CentOS 7 JDK:Oracle JDK fmw_12.2.1.2.0_wls.jar 0x01.新建普通用户weblogic 在Linux环境下建议使用普通用户安装,web ...

  8. MethodTrace 生成的trace文件为空

    今天我准备生成一个trace文件,看看程序卡在哪里. 一般: Debug.startMethodTracing("yuge"); Debug.stopMethodTracing() ...

  9. 通过重写ViewGroup学习onMeasure()和onLayout()方法

    在继承ViewGroup类时,需要重写两个方法,分别是onMeasure和onLayout. 1,在方法onMeasure中调用setMeasuredDimension方法 void android. ...

  10. Ajax异步与JavaScript的一些初浅认识

    向服务器请求数据的技术 有以下五种常用技术用于向服务器请求数据 XMLHttpRequest(XHR) Dynamic script tag insertion(动态脚本标签插入) iframes C ...