洛谷P4116 Qtree3
题目描述
给出\(N\)个点的一棵树(\(N-1\)条边),节点有白有黑,初始全为白
有两种操作:
\(0\) \(i\) : 改变某点的颜色(原来是黑的变白,原来是白的变黑)
\(1\) \(v\) : 询问\(1\)到\(v\)的路径上的第一个黑点,若无,输出\(-1\)
输入输出格式
输入格式:
第一行 \(N\),\(Q\),表示\(N\)个点和\(Q\)个操作
第二行到第\(N\)行\(N-1\)条无向边
再之后\(Q\)行,每行一个操作"\(0\) \(i\)" 或者"\(1\) \(v\)" \((1 ≤ i, v ≤ N)\).
输出格式:
对每个\(1\) \(v\)操作输出结果
输入输出样例
输入样例#1:
9 8
1 2
1 3
2 4
2 9
5 9
7 9
8 9
6 8
1 3
0 8
1 6
1 7
0 2
1 9
0 2
1 9
输出样例#1:
-1
8
-1
2
-1
说明
For \(1/3\) of the test cases, \(N=5000, Q=400000\).
For \(1/3\) of the test cases, \(N=10000, Q=300000\).
For \(1/3\) of the test cases, \(N=100000, Q=100000\).
思路:对于操作\(1\),显然我们可以利用线段树的单点修改操作来实现,对于操作\(2\),要求求\(1\)到\(v\)的路径上的第一个黑点,那么我们可以考虑维护两点之间路径之间是黑点的点的深度最浅值,可以用树链剖分+线段树来实现。
代码:
#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
const int inf=1e9+7;
int n,m,num,top[maxn],cnt,head[maxn],d[maxn],size[maxn],id[maxn];
int minn[maxn<<2],fa[maxn],son[maxn],a[maxn],w[maxn];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,nxt;
}e[maxn<<1];
inline void ct(int u, int v) {
e[++num].v=v;
e[num].nxt=head[u];
head[u]=num;
}
void dfs1(int u) {
size[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]) {
d[v]=d[u]+1;
fa[v]=u;
dfs1(v);
size[u]+=size[v];
if(size[v]>size[son[u]]) son[u]=v;
}
}
}
void dfs2(int u, int t) {
id[u]=++cnt;
top[u]=t;
a[cnt]=u;
if(son[u]) dfs2(son[u],t);
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
inline void pushup(int rt) {
minn[rt]=min(minn[ls],minn[rs]);
}
void build(int rt, int l, int r) {
if(l==r) {
minn[rt]=inf;
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(rt);
}
void modify(int rt, int l, int r, int L) {
if(l==r) {
if(w[id[L]]^=1) minn[rt]=l;
else minn[rt]=inf;
return;
}
int mid=(l+r)>>1;
if(L<=mid) modify(ls,l,mid,L);
else modify(rs,mid+1,r,L);
pushup(rt);
}
int cmin(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return inf;
if(L<=l&&r<=R) return minn[rt];
int mid=(l+r)>>1,ans=inf;
if(L<=mid) ans=min(ans,cmin(ls,l,mid,L,R));
if(R>mid) ans=min(ans,cmin(rs,mid+1,r,L,R));
return ans;
}
int query(int x, int y) {
int fx=top[x],fy=top[y],ans=inf;
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans=min(ans,cmin(1,1,cnt,id[fx],id[x]));
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans=min(ans,cmin(1,1,cnt,id[x],id[y]));
return ans;
}
int main() {
n=qread(),m=qread();
for(int i=1,u,v;i<n;++i) {
u=qread(),v=qread();
ct(u,v);ct(v,u);
}
dfs1(1);dfs2(1,1);build(1,1,n);
for(int i=1,k,x;i<=m;++i) {
k=qread(),x=qread();
if(!k) modify(1,1,n,id[x]);
else {
int zrj=query(1,x);
if(zrj==inf) printf("-1\n");
else printf("%d\n",a[zrj]);
}
}
return 0;
}
洛谷P4116 Qtree3的更多相关文章
- 洛谷 P4116 Qtree3
Qtree系列第三题 我是题面 读完题大概不难判断是一道树剖的题 这道题的关键是记录两种状态,以及黑点的序号(不是编号) 线段树啊当然 定义两个变量v,f,v表示距离根节点最近的黑点,默认-1,f则表 ...
- 洛谷P4116 Qtree3(树剖+线段树)
传送门 LCT秒天秒地 树剖比较裸的题了 用线段树记录一下区间的最左边的黑点的编号(因为同一条链上肯定是最左边的深度最小,到根节点距离最近) 然后记得树剖的时候肯定是越后面的答案越优,因为深度越浅 / ...
- 【洛谷 P4116】 Qtree3 (树链剖分)
题目链接 树剖练手题,想复习下树剖. 第一次提交\(T\)成QQC 看我 ??? 看了数据范围的确挺恶心的,我的复杂度是\(O(Mlog^2N)\)的,数据范围有三段 For 1/3 of the t ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
随机推荐
- ATL和vc++中的智能指针(分别是CComPtr和_com_ptr_t)
一.智能指针的概念 智能指针是一个类,不是指针,智能指针在所包含的指针不再被使用时候会自动释放该所包含指针所占用的系统资源,而不用手动释放. 原理:智能指针封装了包含指针的AddRef()函数和Rel ...
- 关于python包,模块,.pyc文件和文件导入理解
参考文献 一.包 包是一个文件夹,用来存放模块和子包. 包里一般会有一个__init__.py的文件(也可以没有). 包里会有一个__pycache__文件夹,存放.py文件经解释器解释后的中间字节码 ...
- Deferred Shading延迟渲染
Deferred Shading 传统的渲染过程通常为:1)绘制Mesh:2)指定材质:3)处理光照效果:4)输出.传统的过程Mesh越多,光照处理越费时,多光源时就更慢了. 延迟渲染的步骤:1)Pa ...
- Parallel Programming-Parallel.Invoke
本文主要介绍Parallel.Invoke的使用. 一.使用例子 class ParallelInvoke { public void Action1() { Thread.Sleep(); Cons ...
- BZOJ1455:罗马游戏
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=1455 浅谈左偏树:https://www.cnblogs.com/AKMer/p/102466 ...
- lvs+keepalived和haproxy+heartbeat区别
最近一直在看一些高可用性的负载均衡方案,当然那些f5之类的硬件设备是玩不起也接触不到了.只能看这些for free的开源方案. 目前使用比较多的就是标题中提到的这两者,其实lvs和haproxy都是实 ...
- java web基础学习 Forward和Redirect区别
Forward和Redirect代表了两种请求转发方式:直接转发和间接转发.对应到代码里,分别是RequestDispatcher类的forward()方法和HttpServletRequest类的s ...
- UML核心元素--参与者
定义:参与者是在系统之外与系统交互的某人或某事物.参与者在建模过程中处于核心地位. 1.系统之外:系统之外的定义说明在参与者和系统之间存在明确的边界,参与者只能存在于边界之外,边界之内的所有人和事务都 ...
- python并发编程之多进程2数据共享及进程池和回调函数
一.数据共享 尽量避免共享数据的方式 可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 命令就是一 ...
- inner join ,left join ,right join区别
inner join ,left join ,right join区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中 ...