题目描述

n个物品,第i个位置有ai、bi、ci三种属性。每次可以选出满足$\ a_{p_i}<a_{p_{i+1}}\ ,\ b_{p_i}<b_{p_{i+1}}\ ,\ c_{p_i}<c_{p_{i+1}}\ $的一段序列$p_1,p_2,...,p_k$(不要求$p_1,p_2,...,p_k$的大小关系),将这些物品$p_i$消掉。问:(1)一次最多能够消掉的物品的数目。 (2)最少需要多少次操作能够把所有物品全部消掉。

输入

第一行一个整数N给出B国导弹的数目。 接下来N行每行三个非负整数Xi, Yi, Zi给出一个导弹的位置,你可以假定任意两个导弹不会出现在同一位置。

输出

第一行输出一个整数P,表示一枚拦截导弹之多能够摧毁的导弹数。 第二行输出一个整数Q,表示至少需要的拦截导弹数目。

样例输入

4
0 0 0
1 1 0
1 1 1
2 2 2

样例输出

3
2


题解

dp+二分图最大匹配

第一问按照第一维排序,然后$n^2$暴力求二维LIS即可。

第二问如果把能够先打A后打B的A向B连边,那么显然这是一个DAG图,我们要求的是它的最小路径覆盖。

这是经典的二分图建模了,说一下做法吧:

每个原图中的点拆成两个($A_i$和$A_j$),如果存在边$A\to B$,则连边$A_i\to B_j$。跑二分图最大匹配,n-最大匹配即为答案。

于是直接上匈牙利算法/dinic即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
using namespace std;
struct data
{
int a , b , c;
bool operator<(const data x)const {return a < x.a;}
}v[N];
int f[N] , head[N] , to[N * N] , next[N * N] , cnt , vis[N] , from[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
bool dfs(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
{
if(!vis[to[i]])
{
vis[to[i]] = 1;
if(!from[to[i]] || dfs(from[to[i]]))
{
from[to[i]] = x;
return 1;
}
}
}
return 0;
}
int main()
{
int n , i , j , ans1 = 0 , ans2 = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d%d" , &v[i].a , &v[i].b , &v[i].c);
sort(v + 1 , v + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
f[i] = 1;
for(j = 1 ; j < i ; j ++ )
if(v[j].a < v[i].a && v[j].b < v[i].b && v[j].c < v[i].c)
f[i] = max(f[i] , f[j] + 1) , add(j , i);
ans1 = max(ans1 , f[i]);
}
printf("%d\n" , ans1);
for(i = 1 ; i <= n ; i ++ )
{
memset(vis , 0 , sizeof(vis));
if(dfs(i)) ans2 ++ ;
}
printf("%d\n" , n - ans2);
return 0;
}

【bzoj2044】三维导弹拦截 dp+二分图最大匹配的更多相关文章

  1. 【BZOJ2044】三维导弹拦截 DP+(有上下界的)网络流

    [BZOJ2044]三维导弹拦截 Description 一场战争正在A国与B国之间如火如荼的展开. B国凭借其强大的经济实力开发出了无数的远程攻击导弹,B国的领导人希望,通过这些导弹直接毁灭A国的指 ...

  2. [bzoj2044] 三维导弹拦截 (二分图最大匹配+dp)

    传送门 Description 一场战争正在A国与B国之间如火如荼的展开. B国凭借其强大的经济实力开发出了无数的远程攻击导弹,B国的领导人希望,通过这些导弹直接毁灭A国的指挥部,从而取得战斗的胜利! ...

  3. bzoj2044: 三维导弹拦截

    Description 一场战争正在A国与B国之间如火如荼的展开. B国凭借其强大的经济实力开发出了无数的远程攻击导弹,B国的领导人希望,通过这些导弹直接毁灭A国的指挥部,从而取得战斗的胜利!当然,A ...

  4. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  5. P1020 导弹拦截 dp 树状数组维护最长升序列

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  6. UESTC 2015dp专题 N 导弹拦截 dp

    导弹拦截 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/65 Descrip ...

  7. bzoj 2044 三维导弹拦截——DAG最小路径覆盖(二分图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2044 还以为是CDQ.发现自己不会三维以上的…… 第一问可以n^2.然后是求最长不下降子序列 ...

  8. 导弹拦截 dp

    n∗lognn*lognn∗logn写法,lis[i]的意义为:所有最长上升子序列长度为i的位置上的最小a数组元素值lis[i]的意义为:所有最长上升子序列长度为i的位置上的最小a数组元素值lis[i ...

  9. [BZOJ] 2044: 三维导弹拦截

    排序去掉一维,剩下两维可以直接\(O(n^2)\)做,也可以用二维树状数组(但是不方便建边),解决第一问 第二问,按转移顺序连边,建出DAG,求最小不可重链覆盖即可 #include<algor ...

随机推荐

  1. javascript入门笔记9-认识DOM

    认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属性和文本的树结构(节点树). 将HTML代码分 ...

  2. runit git-daemon-run 等错误

    正在处理用于 man-db (2.7.5-1) 的触发器 ... 正在设置 runit (2.1.2-3ubuntu1) ... start: 无法连接到 Upstart: Failed to con ...

  3. JS实现数组去重的方法(6种)

    方法一: 双层循环,外层循环元素,内层循环时比较值 如果有相同的值则跳过,不相同则push进数组 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Arra ...

  4. top小火箭

    // my.js function $(id){return document.getElementById(id)};function show(obj){obj.style.display = & ...

  5. org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'transactionManager' defined in class path resource [spring/applicationContext-service.xml]: Cannot resolve refer

    <!-- aop --> <aop:config> <aop:pointcut expression="execution(* com.zsn.Service. ...

  6. 基于PHP的微信公众平台开发(TOKEN验证,消息回复)

    微信公众平台开发 实现步骤: 第一步:填写服务器配置 登录微信公众平台官网后,在公众平台后台管理页面 - 开发者中心页,点击“修改配置”按钮,填写服务器地址(URL).Token和EncodingAE ...

  7. spring-mybatis整合异常

    Failed to read artifact descriptor for XXXXXX:jar:XXXX.RELEAS 原因是maven的本地仓库没有设置好.在别处拷贝过来的项目会有自己的仓库位置 ...

  8. 柱状图多系列php动态实现(ec)

    <?php require_once 'data.php'; $arr1=$a->sum('answer','ask_id=1'); $arr2=$a->sum('answer',' ...

  9. Linux编译移植Qt5的环境_Xillinx的ZYNQ平台

    Linux编译Qt环境 2017年的十一假期,足不出户,一个人在教研室里面搞Qt的移植.我手里面有Samsung的CortexA8,Samsung的 CortexA53还有Ti的Sitara系列的AM ...

  10. python-10多进程

    1-多进程(multiprocessing), 1个父进程可以有多少子进程 1.1下面的例子演示了启动一个子进程并等待其结束 from multiprocessing import Process i ...