Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp
1 second
256 megabytes
standard input
standard output
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of n laptops. Determine whether two described above laptops exist.
The first line contains an integer n (1 ≤ n ≤ 105) — the number of laptops.
Next n lines contain two integers each, ai and bi (1 ≤ ai, bi ≤ n), where ai is the price of the i-th laptop, and bi is the number that represents the quality of the i-th laptop (the larger the number is, the higher is the quality).
All ai are distinct. All bi are distinct.
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
2
1 2
2 1
Happy Alex
题意:第一个数为价格,第二个数为质量, 问是否有质量比另一件好,价格比另一件低的;
思路:因为ai跟bi都不同,所以直接标记,即是a有序,扫一遍就是;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
int flag[N];
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
for(i=;i<=x;i++)
{
int y,z;
scanf("%d%d",&y,&z);
flag[y]=z;
}
int maxx=flag[];
for(i=;i<=x;i++)
{
if(flag[i]<maxx)
{
printf("Happy Alex\n");
return ;
}
maxx=flag[i];
}
printf("Poor Alex\n");
return ;
}
1 second
256 megabytes
standard input
standard output
Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression:
(1n + 2n + 3n + 4n) mod 5
for given value of n. Fedya managed to complete the task. Can you? Note that given number n can be extremely large (e.g. it can exceed any integer type of your programming language).
The single line contains a single integer n (0 ≤ n ≤ 10105). The number doesn't contain any leading zeroes.
Print the value of the expression without leading zeros.
4
4
124356983594583453458888889
0
Operation x mod y means taking remainder after division x by y.
Note to the first sample:
题意:(1^n + 2^n + 3^n + 4^n) mod 5,n是大数;
思路:应该mod5很容易找到规律,写了一发指数循环节;
大数取模:模拟,从前往后遍历一遍就是;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
char ch[N];
int quickmod(int x,int y,int mod)
{
int ans=;
while(y)
{
if(y&)ans*=x,ans%=mod;
y>>=;
x*=x;
x%=mod;
}
return ans;
}
int main()
{
int x,y,z,i,t;
scanf("%s",ch);
x=strlen(ch);
int sum=;
for(i=;i<x;i++)
{
sum=sum*+ch[i]-'';
sum%=;
}
int ans=;
for(i=;i<=;i++)
ans+=quickmod(i,sum+,);
printf("%d\n",ans%);
return ;
}
1 second
256 megabytes
standard input
standard output
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
2
1 2
2
3
1 2 3
4
9
1 2 1 3 2 2 2 2 3
10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this[2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
题意:给你一个n个数,每次可以选择一个数x,得到的贡献是x,需要去掉所有的x+1,跟x-1,求得到的最大贡献;
思路:dp,每个数的贡献显然=该数的值*该数的个数;
dp[i]表示从1-i得到的最大贡献,dp[i]=max(dp[i-1],dp[i-1]+a[i]);a[i]表示i的贡献;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
ll dp[N];
ll a[N];
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
for(i=;i<=x;i++)
{
scanf("%d",&y);
a[y]+=y;
}
dp[]=a[];
for(i=;i<=1e5;i++)
dp[i]=max(dp[i-],dp[i-]+a[i]);
printf("%lld\n",dp[]);
return ;
}
Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp的更多相关文章
- Codeforces Round #260 (Div. 2) A B C 水 找规律(大数对小数取模) dp
A. Laptops time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #327 (Div. 2) C Median Smoothing(找规律)
分析: 三个01组合只有八种情况: 000 s001 s010 0011 s100 s101 1110 s111 s 可以看出只有010,101是不稳定的.其他都是稳定的,且连续地出现了1或0,标记为 ...
- Codeforces Round #272 (Div. 2) D.Dreamoon and Sets 找规律
D. Dreamoon and Sets Dreamoon likes to play with sets, integers and . is defined as the largest p ...
- DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...
- 递推DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* DP:从1到最大值,dp[i][1/0] 选或不选,递推更新最大值 */ #include <cstdio> #include <algorithm> #in ...
- Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集
A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...
- Codeforces Round #260 (Div. 2)AB
http://codeforces.com/contest/456/problem/A A. Laptops time limit per test 1 second memory limit per ...
- Codeforces Round #260 (Div. 1) D. Serega and Fun 分块
D. Serega and Fun Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/pro ...
- Codeforces Round #260 (Div. 1) C. Civilization 并查集,直径
C. Civilization Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/probl ...
随机推荐
- 【cocos2dx开发技巧10】cocosStudio的集成以及c++11的新特性
转发.请保持地址:http://blog.csdn.net/stalendp/article/details/38880997 非常长时间没有碰cocos2dx了,近期又用起来了.花了好几个小时又一次 ...
- tornado 初学
tornado第一个例子 import tornado.ioloopimport tornado.web class MainHandler(tornado.web.RequestHandler): ...
- 堆排序算法的java实现
堆积排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法,辅助空间为O(1), 最坏时间复杂度为O ...
- oracle中把函数的执行权限赋个某个用户
赋权:grant execute on function1 to ucr_dtb1;收回执行权限:revoke execute on function1 from ucr_dtb1; 在ucr_dtb ...
- MIC中offload语法总结
MIC中offload的用法如下: #pragma offload specifier [,specifier...]specifier可以填入的选项为:target 例:taget(mic:0)if ...
- ajaxFileUpload 实现多文件上传(源码)
按照原ajaxFileUpload.js是不能多文件上传的.需要对源码进行修改:主要修改了fileElementId部分 具体参考 https://blog.csdn.net/itmyhome1990 ...
- js 抢月饼
面源码: <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" co ...
- django form 表单验证
- poj2367
Genealogical tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4420 Accepted: 2933 ...
- mysql中的乐观锁和悲观锁
mysql中的乐观锁和悲观锁的简介以及如何简单运用. 关于mysql中的乐观锁和悲观锁面试的时候被问到的概率还是比较大的. mysql的悲观锁: 其实理解起来非常简单,当数据被外界修改持保守态度,包括 ...