Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp
1 second
256 megabytes
standard input
standard output
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of n laptops. Determine whether two described above laptops exist.
The first line contains an integer n (1 ≤ n ≤ 105) — the number of laptops.
Next n lines contain two integers each, ai and bi (1 ≤ ai, bi ≤ n), where ai is the price of the i-th laptop, and bi is the number that represents the quality of the i-th laptop (the larger the number is, the higher is the quality).
All ai are distinct. All bi are distinct.
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
2
1 2
2 1
Happy Alex
题意:第一个数为价格,第二个数为质量, 问是否有质量比另一件好,价格比另一件低的;
思路:因为ai跟bi都不同,所以直接标记,即是a有序,扫一遍就是;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
int flag[N];
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
for(i=;i<=x;i++)
{
int y,z;
scanf("%d%d",&y,&z);
flag[y]=z;
}
int maxx=flag[];
for(i=;i<=x;i++)
{
if(flag[i]<maxx)
{
printf("Happy Alex\n");
return ;
}
maxx=flag[i];
}
printf("Poor Alex\n");
return ;
}
1 second
256 megabytes
standard input
standard output
Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression:
(1n + 2n + 3n + 4n) mod 5
for given value of n. Fedya managed to complete the task. Can you? Note that given number n can be extremely large (e.g. it can exceed any integer type of your programming language).
The single line contains a single integer n (0 ≤ n ≤ 10105). The number doesn't contain any leading zeroes.
Print the value of the expression without leading zeros.
4
4
124356983594583453458888889
0
Operation x mod y means taking remainder after division x by y.
Note to the first sample:

题意:(1^n + 2^n + 3^n + 4^n) mod 5,n是大数;
思路:应该mod5很容易找到规律,写了一发指数循环节;
大数取模:模拟,从前往后遍历一遍就是;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
char ch[N];
int quickmod(int x,int y,int mod)
{
int ans=;
while(y)
{
if(y&)ans*=x,ans%=mod;
y>>=;
x*=x;
x%=mod;
}
return ans;
}
int main()
{
int x,y,z,i,t;
scanf("%s",ch);
x=strlen(ch);
int sum=;
for(i=;i<x;i++)
{
sum=sum*+ch[i]-'';
sum%=;
}
int ans=;
for(i=;i<=;i++)
ans+=quickmod(i,sum+,);
printf("%d\n",ans%);
return ;
}
1 second
256 megabytes
standard input
standard output
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
2
1 2
2
3
1 2 3
4
9
1 2 1 3 2 2 2 2 3
10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this[2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
题意:给你一个n个数,每次可以选择一个数x,得到的贡献是x,需要去掉所有的x+1,跟x-1,求得到的最大贡献;
思路:dp,每个数的贡献显然=该数的值*该数的个数;
dp[i]表示从1-i得到的最大贡献,dp[i]=max(dp[i-1],dp[i-1]+a[i]);a[i]表示i的贡献;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
ll dp[N];
ll a[N];
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
for(i=;i<=x;i++)
{
scanf("%d",&y);
a[y]+=y;
}
dp[]=a[];
for(i=;i<=1e5;i++)
dp[i]=max(dp[i-],dp[i-]+a[i]);
printf("%lld\n",dp[]);
return ;
}
Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp的更多相关文章
- Codeforces Round #260 (Div. 2) A B C 水 找规律(大数对小数取模) dp
A. Laptops time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #327 (Div. 2) C Median Smoothing(找规律)
分析: 三个01组合只有八种情况: 000 s001 s010 0011 s100 s101 1110 s111 s 可以看出只有010,101是不稳定的.其他都是稳定的,且连续地出现了1或0,标记为 ...
- Codeforces Round #272 (Div. 2) D.Dreamoon and Sets 找规律
D. Dreamoon and Sets Dreamoon likes to play with sets, integers and . is defined as the largest p ...
- DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...
- 递推DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* DP:从1到最大值,dp[i][1/0] 选或不选,递推更新最大值 */ #include <cstdio> #include <algorithm> #in ...
- Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集
A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...
- Codeforces Round #260 (Div. 2)AB
http://codeforces.com/contest/456/problem/A A. Laptops time limit per test 1 second memory limit per ...
- Codeforces Round #260 (Div. 1) D. Serega and Fun 分块
D. Serega and Fun Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/pro ...
- Codeforces Round #260 (Div. 1) C. Civilization 并查集,直径
C. Civilization Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/probl ...
随机推荐
- px值转rem值的Sublime Text 3自己主动完毕插件
一个CSS的px值转rem值的Sublime Text 3自己主动完毕插件. 插件效果例如以下: 安装 克隆项目 https://github.com/hyb628/cssrem.git 进入pa ...
- 实现Nullable 可空类型
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace demo ...
- 自动化测试工具 - Unified Functional Testing
这几天跟自动化测试工具UFT耗上了... 网罗了下,居然有不少自动化测试工具,像Selenium,QTP(UFT前身),LoadRunner,真是只有想不到,没有人家办不到. 言归正传,记录下小白使用 ...
- laravel学习之路4artisan
php artisan list php artisan help migrate Tinker 让你可以在命令行中与 Laravel 应用进行交互php artisan tinker 在routes ...
- golang struct 定义中json``解析说明
在代码学习过程中,发现struct定义中可以包含`json:"name"`的声明,所以在网上找了一些资料研究了一下 package main import ( "enco ...
- [转]基于Python的接口测试框架
http://blog.csdn.net/wyb199026/article/details/51485322 背景 最近公司在做消息推送,那么自然就会产生很多接口,测试的过程中需要调用接口,我就突然 ...
- shiro 实现自己定义权限规则校验
<span style="font-family: Arial, Helvetica, sans-serif;">在系统中使用shiro进行权限管理,当用户訪问没有权限 ...
- vue2 本地安装
- 开始翻译《Beginning SharePoint 2013 Development》
伙同涂曙光@kaneboy 和柴晓伟@WindieChai 翻译Beginning SharePoint 2013 Development 作者是Steve Fox,传说中的Andrew Connel ...
- sharding-jdbc从入门到出门(03)
经过端午节这2天对 sharding-jdbc一直怀揣成梦想的去学习,还是有一些没有解决的问题: 上一张图: