题目链接:https://vjudge.net/contest/156903#problem/E

题意:已知

求:C(p,q)/C(r,s)

其中p,q,r,s都是10^4,硬算是肯定超数据类型的。

可以这样处理:利用唯一分解式约分;

首先将所有数,唯一分解;最后,算素数的乘积;

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;
vector<int> primes;
int e[maxn]; bool is_prime(int n) {
int m = floor(sqrt(n)+0.5); //向下取整
for(int i=;i<=m;i++)
if(n%i==) return false;
return true;
} void add_integer(int n,int d) {
for(int i=;i<primes.size();i++) {
while(n%primes[i]==) {
n /=primes[i];
e[i]+=d;
}
if(n==) break;
}
} void add_factorial(int n,int d) {
for(int i=;i<=n;i++)
add_integer(i,d);
} int main()
{
for(int i=;i<=;i++)
if(is_prime(i)) primes.push_back(i); int p,q,r,s;
while(cin>>p>>q>>r>>s) {
memset(e,,sizeof(e));
add_factorial(p,);
add_factorial(q,-);
add_factorial(p-q,-);
add_factorial(r,-);
add_factorial(s,);
add_factorial(r-s,); double ans = ;
for(int i=;i<primes.size();i++) {
ans*=pow(primes[i],e[i]);
} printf("%.5lf\n",ans); } return ;
}

Uva 10375 选择与除法 唯一分解定理的更多相关文章

  1. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  2. UVa 10375 选择与除法(唯一分解定理)

    https://vjudge.net/problem/UVA-10375 题意: 输入整数p,q,r,s,计算C(p,q)/C(r,s). 思路: 先打个素数表,然后用一个数组e来保存每个素数所对应的 ...

  3. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

  4. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  5. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  6. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  7. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  8. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  9. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

随机推荐

  1. spark Failed to get database default, returning NoSuchObjectException

    解决方法:1)Copy winutils.exe from here(https://github.com/steveloughran/winutils/tree/master/hadoop-2.6. ...

  2. 1.1 Rust安装

    从今天起,坚持每天学习10分钟Rust...这是一个刚兴起几年的语言,希望深入地进行学习,为什么呢,因为以下这些让人辛酸的理由..... 最开始学习的是C++,没学太懂,之后又学了C,这时还完全对计算 ...

  3. 第十一章:DOM扩展

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 查看Python支持的.whl文件版本

    AMD64 import pip._internal print(pip._internal.pep425tags.get_supported()) WIN32 import pip print(pi ...

  5. Linux 进程间通信之管道(pipe),(fifo)

     无名管道(pipe) 管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信: 定义函数: int pipe(int f ...

  6. My first Python program(附增加清屏方法)

    #TempConvert.py TempStr = input("请输入带有符号的温度值:") if TempStr[-1] in ['F', 'f']: C = (eval(Te ...

  7. eleme 项目使用到的库

    探索eleme用到的库 xml re库 通过regex = re.compile(pattern)返回一个pattern对象, 通过该对象匹配正则表达式的字符串, 最好在模式中使用r'some'原始字 ...

  8. NLog学习笔记二:深入学习

    配置文件 NLog所有的配置信息都可以写到一个单独的xml文件中,也可以在程序代码中进行配置. 配置文件位置 启动的时候,NLog会试图查找配置文件完成自动配置,查找的文件依次如下(找到配置信息则结束 ...

  9. Hosted Services+Quartz实现定时任务调度

    背景 之前.net core使用quartz.net时,总感觉非常变扭,百度和谷歌了N久都没解决以下问题,造成代码丑陋,非常不优雅: 1.项目启动时,要立刻恢复执行quartz.net中的任务 2.q ...

  10. linq 两个字段排序

    在linq中排序方法有: OrderBy()  --对某列升序排序 ThenBy()    --某列升序后对另一列后续升序排序 OrderByDescending() --对某列降序排序 ThenBy ...