在slave3安装MySQL作为hive 的matastore

[root@slave3 hadoop]# yum search mysql

[root@slave3 hadoop]# yum install mysql-server.x86_64

成功安装MySQL

Installed:

mysql-server.x86_64 0:5.1.73-5.el6_6

Dependency Installed:

mysql.x86_64 0:5.1.73-5.el6_6 perl.x86_64 4:5.10.1-136.el6_6.1 perl-DBD-MySQL.x86_64 0:4.013-3.el6

perl-DBI.x86_64 0:1.609-4.el6 perl-Module-Pluggable.x86_64 1:3.90-136.el6_6.1 perl-Pod-Escapes.x86_64 1:1.04-136.el6_6.1

perl-Pod-Simple.x86_64 1:3.13-136.el6_6.1 perl-libs.x86_64 4:5.10.1-136.el6_6.1 perl-version.x86_64 3:0.77-136.el6_6.1

Dependency Updated:

mysql-libs.x86_64 0:5.1.73-5.el6_6

Complete!

[root@slave3 hadoop]# service mysqld start

启动MySQL

修改MySQL登录密码

mysql> set password =password(‘root’);

Query OK, 0 rows affected (0.00 sec)

slave3cpu信息

内存

[hadoop@slave4 ~]$ free -m

total used free shared buffers cached

Mem: 1866 1798 68 0 7 1500

-/+ buffers/cache: 290 1575

Swap: 3999 0 3999

单位为MB

详细内存

[hadoop@slave4 ~]$ cat /proc/meminfo

MemTotal: 1911400 kB

MemFree: 66904 kB

Buffers: 7308 kB

Cached: 1539760 kB

SwapCached: 0 kB

Active: 135492 kB

Inactive: 1603924 kB

Active(anon): 93060 kB

Inactive(anon): 99604 kB

Active(file): 42432 kB

Inactive(file): 1504320 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 4095992 kB

SwapFree: 4095992 kB

Dirty: 48 kB

Writeback: 0 kB

AnonPages: 192444 kB

Mapped: 15264 kB

Shmem: 220 kB

Slab: 73204 kB

SReclaimable: 17448 kB

SUnreclaim: 55756 kB

KernelStack: 1264 kB

PageTables: 2504 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 5051692 kB

Committed_AS: 292260 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 540012 kB

VmallocChunk: 34359184520 kB

HardwareCorrupted: 0 kB

AnonHugePages: 159744 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 9792 kB

DirectMap2M: 2076672 kB

磁盘

查看硬盘和分区分布

[hadoop@slave4 ~]$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 232.9G 0 disk

鈹溾攢sda1 8:1 0 500M 0 part /boot

鈹斺攢sda2 8:2 0 232.4G 0 part

鈹溾攢vg_slave4-lv_root (dm-0) 253:0 0 50G 0 lvm /

鈹溾攢vg_slave4-lv_swap (dm-1) 253:1 0 3.9G 0 lvm [SWAP]

鈹斺攢vg_slave4-lv_home (dm-2) 253:2 0 178.5G 0 lvm /home

[root@slave4 hadoop]# fdisk -l

Disk /dev/sda: 250.1 GB, 250058268160 bytes

255 heads, 63 sectors/track, 30401 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x2c63be37

Device Boot Start End Blocks Id System

/dev/sda1 * 1 64 512000 83 Linux

Partition 1 does not end on cylinder boundary.

/dev/sda2 64 30402 243684352 8e Linux LVM

Disk /dev/mapper/vg_slave4-lv_root: 53.7 GB, 53687091200 bytes

255 heads, 63 sectors/track, 6527 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Disk /dev/mapper/vg_slave4-lv_swap: 4194 MB, 4194304000 bytes

255 heads, 63 sectors/track, 509 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Disk /dev/mapper/vg_slave4-lv_home: 191.7 GB, 191650332672 bytes

255 heads, 63 sectors/track, 23300 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

dfs系统节点

[hadoop@slave4 ~]$ hadoop dfsadmin -report

Configured Capacity: 985770651648 (918.07 GB)

Present Capacity: 934353133568 (870.18 GB)

DFS Remaining: 590443302912 (549.89 GB)

DFS Used: 343909830656 (320.29 GB)

DFS Used%: 36.81%

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0


Datanodes available: 7 (7 total, 0 dead)

Name: 192.168.2.6:50010

Decommission Status : Normal

Configured Capacity: 188643102720 (175.69 GB)

DFS Used: 75069222912 (69.91 GB)

Non DFS Used: 9779052544 (9.11 GB)

DFS Remaining: 103794827264(96.67 GB)

DFS Used%: 39.79%

DFS Remaining%: 55.02%

Last contact: Sun Jul 05 10:52:17 CST 2015

Name: 192.168.2.13:50010

Decommission Status : Normal

Configured Capacity: 21277569024 (19.82 GB)

DFS Used: 136781824 (130.45 MB)

Non DFS Used: 1261211648 (1.17 GB)

DFS Remaining: 19879575552(18.51 GB)

DFS Used%: 0.64%

DFS Remaining%: 93.43%

Last contact: Sun Jul 05 10:52:17 CST 2015

Name: 192.168.2.9:50010

Decommission Status : Normal

Configured Capacity: 188643102720 (175.69 GB)

DFS Used: 58468474880 (54.45 GB)

Non DFS Used: 9779011584 (9.11 GB)

DFS Remaining: 120395616256(112.13 GB)

DFS Used%: 30.99%

DFS Remaining%: 63.82%

Last contact: Sun Jul 05 10:52:18 CST 2015

Name: 192.168.2.10:50010

Decommission Status : Normal

Configured Capacity: 188643102720 (175.69 GB)

DFS Used: 74225582080 (69.13 GB)

Non DFS Used: 9778978816 (9.11 GB)

DFS Remaining: 104638541824(97.45 GB)

DFS Used%: 39.35%

DFS Remaining%: 55.47%

Last contact: Sun Jul 05 10:52:17 CST 2015

Name: 192.168.2.11:50010

Decommission Status : Normal

Configured Capacity: 188643102720 (175.69 GB)

DFS Used: 63778144256 (59.4 GB)

Non DFS Used: 9779015680 (9.11 GB)

DFS Remaining: 115085942784(107.18 GB)

DFS Used%: 33.81%

DFS Remaining%: 61.01%

Last contact: Sun Jul 05 10:52:15 CST 2015

Name: 192.168.2.12:50010

Decommission Status : Normal

Configured Capacity: 21277569024 (19.82 GB)

DFS Used: 966615040 (921.84 MB)

Non DFS Used: 1261236224 (1.17 GB)

DFS Remaining: 19049717760(17.74 GB)

DFS Used%: 4.54%

DFS Remaining%: 89.53%

Last contact: Sun Jul 05 10:52:17 CST 2015

Name: 192.168.2.7:50010

Decommission Status : Normal

Configured Capacity: 188643102720 (175.69 GB)

DFS Used: 71265009664 (66.37 GB)

Non DFS Used: 9779011584 (9.11 GB)

DFS Remaining: 107599081472(100.21 GB)

DFS Used%: 37.78%

DFS Remaining%: 57.04%

Last contact: Sun Jul 05 10:52:17 CST 2015

安装之后修改配置文件,

[hadoop@slave3 bin]$ ./hive

15/07/06 10:58:20 WARN conf.HiveConf: DEPRECATED: Configuration property hive.metastore.local no longer has any effect. Make sure to provide a valid value for hive.metastore.uris if you are connecting to a remote metastore.

Logging initialized using configuration in file:/opt/hadoop/hive-0.12.0/conf/hive-log4j.properties

hive> set javax.jdo.option.ConnectionURL

;

javax.jdo.option.ConnectionURL=jdbc:mysql://slave3:3306/hive?createDatabaseIfNoExist=true

hive>

hive> show tables;

FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient

hive>

原因是没有driver

加上之后还是不行

2015-07-06 11:04:16,786 WARN bonecp.BoneCPConfig (BoneCPConfig.java:sanitize(1537)) - Max Connections < 1. Setting to 20

2015-07-06 11:04:16,911 ERROR Datastore.Schema (Log4JLogger.java:error(125)) - Failed initialising database.

Unable to open a test connection to the given database. JDBC url = jdbc:mysql://slave3:3306/hive?createDatabaseIfNoExist=true, username = root. Terminating connection pool. Original Exception: ——

java.sql.SQLException: Access denied for user ‘root’@’slave3’ (using password: YES)

MySQL连接不上

https://hadooptutorial.info/unable-open-test-connection-given-database/

根据这篇文章找到问题,原来是写错了

下面惊醒ncdc 的数据分析阶段

根据我的博客中间写的流程创建表;

http://blog.csdn.net/mrcharles/article/details/46514359

create table ncdc (

year string,

month string,

data string,

time string,

air string,

a string,

b string,

c string,

d string,

e string,

f string,

g string

)ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t’ STORED AS TEXTFILE;

ncdc的数据通过一个简单的java程序进行处理,将空格变为制表符

  1. 导入数据到hive中

load data local inpath ‘/opt/software/ncdc/summary’ into table ncdc

hive> load data local inpath ‘/opt/hadoop/hadoopDATA/summary’ into table ncdc;

Copying data from file:/opt/hadoop/hadoopDATA/summary

Copying file: file:/opt/hadoop/hadoopDATA/summary

Loading data to table default.ncdc

Table default.ncdc stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 17013314, raw_data_size: 0]

OK

Time taken: 2.231 seconds

FAILED: RuntimeException java.net.UnknownHostException: unknown host: node1

出现以上的错误

修改配置文件,之前的配置文件是我直接从一台机器中拷贝出来的,没有修改hdfs的url

  1. 查询数据

可以查询每一年的平均气温,最高气温,最低气温等等,也可以使用分组函数,和MySQL操作差不多

select year,avg(air) from ncdc group by year;

hive> select year,avg(air) from ncdc group by year;

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data size: 1

In order to change the average load for a reducer (in bytes):

set hive.exec.reducers.bytes.per.reducer=

In order to limit the maximum number of reducers:

set hive.exec.reducers.max=

In order to set a constant number of reducers:

set mapred.reduce.tasks=

Starting Job = job_201507050950_0001, Tracking URL = http://master:50030/jobdetails.jsp?jobid=job_201507050950_0001

Kill Command = /opt/hadoop/hadoop-1.2.1/libexec/../bin/hadoop job -kill job_201507050950_0001

Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1

2015-07-06 13:05:52,921 Stage-1 map = 0%, reduce = 0%

2015-07-06 13:05:59,965 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 7.02 sec

2015-07-06 13:06:00,972 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 7.02 sec

2015-07-06 13:06:01,978 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 7.02 sec

2015-07-06 13:06:02,985 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.62 sec

2015-07-06 13:06:03,992 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.62 sec

2015-07-06 13:06:04,998 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.62 sec

2015-07-06 13:06:06,005 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.62 sec

2015-07-06 13:06:07,012 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.62 sec

2015-07-06 13:06:08,019 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 11.62 sec

2015-07-06 13:06:09,025 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 11.62 sec

2015-07-06 13:06:10,033 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.53 sec

2015-07-06 13:06:11,040 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.53 sec

2015-07-06 13:06:12,046 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.53 sec

MapReduce Total cumulative CPU time: 14 seconds 530 msec

Ended Job = job_201507050950_0001

MapReduce Jobs Launched:

Job 0: Map: 2 Reduce: 1 Cumulative CPU: 14.53 sec HDFS Read: 51040494 HDFS Write: 537 SUCCESS

Total MapReduce CPU Time Spent: 14 seconds 530 msec

OK

1901 45.16831683168317

1902 21.659558263518658

1903 -17.67699115044248

1904 33.32224247948952

1905 43.3322664228014

1906 47.0834855681403

1907 28.09189090243456

1908 28.80607441154138

1909 25.24907112526539

1910 29.00013071895425

1911 28.088644112247575

1912 16.801145236855803

1913 8.191569568197396

1914 26.378301131816624

1915 2.811635615498914

1916 21.42393787117405

1917 22.895140080045742

1918 27.712506047411708

1919 23.67520250849229

1920 43.508667830133795

1921 31.834957020057306

1922 -44.03716409376787

1923 26.79247747159462

Time taken: 33.348 seconds, Fetched: 23 row(s)

select year,max(air) from ncdc group by year;

结果:

hive> select year,max(air) from ncdc group by year;

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data size: 1

In order to change the average load for a reducer (in bytes):

set hive.exec.reducers.bytes.per.reducer=

In order to limit the maximum number of reducers:

set hive.exec.reducers.max=

In order to set a constant number of reducers:

set mapred.reduce.tasks=

Starting Job = job_201507050950_0002, Tracking URL = http://master:50030/jobdetails.jsp?jobid=job_201507050950_0002

Kill Command = /opt/hadoop/hadoop-1.2.1/libexec/../bin/hadoop job -kill job_201507050950_0002

Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1

2015-07-06 13:07:28,648 Stage-1 map = 0%, reduce = 0%

2015-07-06 13:07:34,675 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 6.57 sec

2015-07-06 13:07:35,681 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 6.57 sec

2015-07-06 13:07:36,687 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 6.57 sec

2015-07-06 13:07:37,693 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 6.57 sec

2015-07-06 13:07:38,699 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.26 sec

2015-07-06 13:07:39,705 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.26 sec

2015-07-06 13:07:40,711 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.26 sec

2015-07-06 13:07:41,716 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.26 sec

2015-07-06 13:07:42,722 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 11.26 sec

2015-07-06 13:07:43,727 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 11.26 sec

2015-07-06 13:07:44,734 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.04 sec

2015-07-06 13:07:45,740 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.04 sec

2015-07-06 13:07:46,746 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 14.04 sec

MapReduce Total cumulative CPU time: 14 seconds 40 msec

Ended Job = job_201507050950_0002

MapReduce Jobs Launched:

Job 0: Map: 2 Reduce: 1 Cumulative CPU: 14.04 sec HDFS Read: 51040494 HDFS Write: 184 SUCCESS

Total MapReduce CPU Time Spent: 14 seconds 40 msec

OK

1901 94

1902 94

1903 94

1904 94

1905 94

1906 94

1907 94

1908 94

1909 94

1910 94

1911 94

1912 94

1913 94

1914 94

1915 94

1916 94

1917 94

1918 94

1919 94

1920 94

1921 94

1922 94

1923 94

Time taken: 26.002 seconds, Fetched: 23 row(s)

select count(*) from ncdc;

hive> select count(*) from ncdc;

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

set hive.exec.reducers.bytes.per.reducer=

In order to limit the maximum number of reducers:

set hive.exec.reducers.max=

In order to set a constant number of reducers:

set mapred.reduce.tasks=

Starting Job = job_201507050950_0004, Tracking URL = http://master:50030/jobdetails.jsp?jobid=job_201507050950_0004

Kill Command = /opt/hadoop/hadoop-1.2.1/libexec/../bin/hadoop job -kill job_201507050950_0004

Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1

2015-07-06 13:08:56,762 Stage-1 map = 0%, reduce = 0%

2015-07-06 13:09:03,803 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 6.26 sec

2015-07-06 13:09:04,809 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:05,816 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:06,825 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:07,831 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:08,838 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:09,844 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:10,850 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 10.21 sec

2015-07-06 13:09:11,857 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 10.21 sec

2015-07-06 13:09:12,866 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 13.14 sec

2015-07-06 13:09:13,872 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 13.14 sec

2015-07-06 13:09:14,878 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 13.14 sec

MapReduce Total cumulative CPU time: 13 seconds 140 msec

Ended Job = job_201507050950_0004

MapReduce Jobs Launched:

Job 0: Map: 2 Reduce: 1 Cumulative CPU: 13.14 sec HDFS Read: 51040494 HDFS Write: 8 SUCCESS

Total MapReduce CPU Time Spent: 13 seconds 140 msec

OK

1006038

Time taken: 28.984 seconds, Fetched: 1 row(s)

版权声明:本文为博主原创文章,未经博主允许不得转载。

hive 集群初探,查询比较的更多相关文章

  1. hive集群安装配置

    hive 是JAVA写的的一个数据仓库,依赖hadoop.没有安装hadoop的,请参考http://blog.csdn.net/lovemelovemycode/article/details/91 ...

  2. presto集成kerberos以及访问集成了kerberos的hive集群

    1.创建主体 注: 192.168.0.230 为单节点集群 192.168.4.50为kdc服务器 192.168.0.9为客户端 1.1.Kdc服务器创建主体 # kadmin.local -q ...

  3. PXC集群信息查询

    目录 PXC集群信息查询 pxc流量控制 PXC节点状态 PXC集群状态 节点与集群的相关信息 PXC集群事务相关信息 PXC集群信息查询 show status like "%wsrep% ...

  4. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  5. HADOOP+SPARK+ZOOKEEPER+HBASE+HIVE集群搭建(转)

    原文地址:https://www.cnblogs.com/hanzhi/articles/8794984.html 目录 引言 目录 一环境选择 1集群机器安装图 2配置说明 3下载地址 二集群的相关 ...

  6. elasticsearch 口水篇(5)es分布式集群初探

    es有很多特性,分布式.副本集.负载均衡.容灾等. 我们先搭建一个很简单的分布式集群(伪),在同一机器上配置三个es,配置分别如下: cluster.name: foxCluster node.nam ...

  7. [经验交流] Apache Mesos Docker集群初探

    前言 因工作需要,我对基于Apache Mesos 的 Docker 集群作了一点研究,并搭建了一套环境,以下是资料分享. 1. Apache Mesos概述 Apache Mesos是一款开源群集管 ...

  8. 使用hive客户端java api读写hive集群上的信息

    上文介绍了hdfs集群信息的读取方式,本文说hive 1.先解决依赖 <properties> <hive.version>1.2.1</hive.version> ...

  9. hive集群模式安装

    hadoop3.2.0 完全分布式安装 hive-3.1.1 #解压缩tar -zxvf /usr/local/soft/apache-hive-3.1.1-bin.tar.gz -C /usr/lo ...

随机推荐

  1. 在C语言中使用syslog打印日志到日志文件

    参见 <unix 环境高级编程>第13 章 精灵进程 Syslog为每个事件赋予几个不同的优先级: LOG_EMERG——紧急情况 LOG_ALERT——应该被立即改正的问题,如系统数据库 ...

  2. input type="radio" jquery判断checked的三种方法:

    <input type="radio" name="radioname" value="" />全部 <input typ ...

  3. sublime 添加 ctags 实现代码跳转

    ctags -R -f .tags生成  .tags文件

  4. 2django 视图与网址进阶

    一.在网页中做加减法 采用/add/?a=11&b=22这样get方法进行 django-admin.py startproject zqxt_views cd zqxt_views pyth ...

  5. js阻止a链接

    <!DOCTYPE HTML> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. iOS UIImage 图片局部拉伸的一些学习要点

    之前 做纯色局部拉伸 通过 top  bottom left  right 相交的阴影拉伸 屡试不爽 实施方法: imageView.image = [[UIImage imageNamed: @&q ...

  7. Java多线程系列 JUC锁08 LockSupport

    转载 http://www.cnblogs.com/skywang12345/p/3505784.html https://www.cnblogs.com/leesf456/p/5347293.htm ...

  8. uitableview 刷新一行

    ios UITableview 刷新某一行 或 section   //一个section刷新     NSIndexSet *indexSet=[[NSIndexSet alloc]initWith ...

  9. castle windsor学习-------Container Events 容器的事件

    所有的事件是实现IKernelEvents 接口,已容器的Kernel属性暴露出来 1. AddedAsChildKernel 当前的容器添加子容器或其他容器时触发 2. RemovedAsChild ...

  10. Exception in thread "main" java.io.IOException: Mkdirs failed to create /var/folders/q0/1wg8sw1x0dg08cmm5m59sy8r0000gn/T/hadoop-unjar6090005653875084137/META-INF/license at org.apache.hadoop.util.Run

    在使用hadoop运行jar时出现. 解决方法 zip -d Test.jar LICENSE zip -d Test.jar META-INF/LICENSE 完美解决.