\[\texttt{Preface}
\]

不开 long long 见祖宗。

\[\texttt{Description}
\]

你有一个 \(n\) 码的袋子,你还有 \(m\) 个盒子,第 \(i\) 个盒子的尺寸是 \(a_i\) ,这里的每一个 \(a_i\) 都是 \(2\) 的非负幂整数。

你可以把盒子分成大小相等的两部分。你的目标是完全装满袋子。

例如 \(n=10,a=[1,1,32]\) ,那么你必须把 \(32\) 码的盒子分成 \(16\) 码的两部分,然后把 \(16\) 码的盒子分开,你可以用 \(1\) 码,\(1\) 码,\(8\) 码的盒子装满袋子。

计算填充尺寸为 \(n\) 的袋子所需的最小分割数。

**多组数据,无解输出 -1 。 **

\[\texttt{Solution}
\]

先来讨论一下 -1 的情况:

考虑到分裂一个数不会影响到所有数的和。

那么我们将所有数都分裂成 \(1\) ,由于和不变,此时 \(1\) 的个数为 \(\sum\limits_{i=1}\limits^{m}a[i]\) ,也就是说小于等于 \(\sum\limits_{i=1}\limits^{m}a[i]\) 的数都可以被填出来。

故当 \(n>\sum\limits_{i=1}\limits^{m}a[i]\) 时,无解。

\(~\)

有一个看起来很正确的贪心策略:

将 \(n\) 二进制拆分成 \(2^{k_1},2^{k_2},...,2^{k_c}\) 。

然后从低位(\(2^{k_1}\))到高位(\(2^{k_c}\))贪心填数。

假设我们当前处理到的数为 \(2^{k_i}\) 。

首先考虑位数小于等于 \(k_i\) 的所有数中,能不能凑成 \(2^{k_i}\) ,若可以,直接填上去;否则考虑分裂位数大于 \(k_i\) 的所有数中最小的那一个,使其经过若干次分裂,分裂成 \(2^{k_i}\) 。

详情见 \(\texttt{Code}\) 。

\[\texttt{Code}
\]

#include<cstdio>
#include<cstring> #define RI register int using namespace std; const int N=100100; int T;
long long n; int m; int a[N]; long long ans,sum; long long cnt[65]; // cnt[k] : 2^k 的出现次数 long long calc(int k) // 计算小于等于 k 的位数中可以组成多少个 2^k
{
long long ans=0;
for(RI i=0;i<k;i++)
ans=(ans+cnt[i])/2;
return ans+cnt[k];
} void work()
{
memset(cnt,0,sizeof(cnt));
ans=sum=0; scanf("%lld%d",&n,&m); for(RI i=1;i<=m;i++)
scanf("%d",&a[i]),sum+=a[i]; if(n>sum)
{
puts("-1");
return;
} for(RI i=1;i<=m;i++)
for(RI j=0;j<=31;j++)
if((a[i]>>j)&1)
{
cnt[j]++;
break;
} for(RI k=0;k<=63;k++)
{
if(((n>>k)&1)==0)continue; // 如果 n 的第 k 位为 0 就 continue if(calc(k)) // 情况 1
cnt[k]--; // 理论上应该要让组成 2^k 的那些数减 , 但实际上这样做 , 在 calc 里也是正确的 else // 情况 2
{
for(RI p=k+1;p<=63;p++) // 找到位数大于 k 的数中最小的那个
if(cnt[p])
{
cnt[p]--; // 模拟分裂
for(RI i=k;i<p;i++)
cnt[i]++; // 模拟分裂
ans+=p-k; // 统计答案
break;
}
}
} printf("%lld\n",ans);
} int main()
{
scanf("%d",&T); while(T--) work(); return 0;
}

\[\texttt{Thanks} \ \texttt{for} \ \texttt{watching}
\]

题解【CF1303D Fill The Bag】的更多相关文章

  1. [CF1303D] Fill The Bag - 贪心

    Solution 考虑从低位往高位贪心,设当前在处理第 \(i\) 位,更低位剩余的部分一共可以拼出 \(cnt\) 个 \(2^i\) 如果 \(n\) 的这一位是 \(1\) ,那么这一位就需要处 ...

  2. I - Fill The Bag codeforces 1303D

    题解:注意这里的数组a中的元素,全部都是2的整数幂.然后有二进制可以拼成任意数.只要一堆2的整数幂的和大于x,x也是2的整数幂,那么那一堆2的整数幂一定可以组成x. 思路:位运算,对每一位,如果该位置 ...

  3. Codeforces1303D. Fill The Bag

    1e18对应2进制有58位,可以直接暴力模拟,因为读入的数都是2次幂,__builtin_ctz这个内置gcc函数可以算出二进制下末尾有几个0,读入时统计,然后从n的最低位开始判断,注意每次升位的时候 ...

  4. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  5. Educational Codeforces Round 82 (Rated for Div. 2) A-E代码(暂无记录题解)

    A. Erasing Zeroes (模拟) #include<bits/stdc++.h> using namespace std; typedef long long ll; ; in ...

  6. 【题解】Educational Codeforces Round 82

    比较菜只有 A ~ E A.Erasing Zeroes 题目描述: 原题面 题目分析: 使得所有的 \(1\) 连续也就是所有的 \(1\) 中间的 \(0\) 全部去掉,也就是可以理解为第一个 \ ...

  7. codeforces 148E Aragorn's Story 背包DP

    Aragorn's Story Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/probl ...

  8. [CF百场计划]#3 Educational Codeforces Round 82 (Rated for Div. 2)

    A. Erasing Zeroes Description You are given a string \(s\). Each character is either 0 or 1. You wan ...

  9. Codeforces题解集 1.0

    记录 Codeforces 2019年12月19日到 2020年2月12日 的部分比赛题 Educational Codeforces Round 82 (Rated for Div. 2) D Fi ...

随机推荐

  1. AcWing 251. 小Z的袜子| 分块+莫队

    传送门 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿. 终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命. 具体来说,小Z把这N只袜子从 ...

  2. Faster Rcnn随笔

    步骤:1.build_head()函数: 构建CNN基层网络图像被缩放16倍2.build_rpn()函数: 在feature map上生成box的坐标和判断是否有物体 generate_anchor ...

  3. Vue中echarts的基本用法

    前言:同大多数的前端框架一样,先读官网的使用方法.学会基本使用后,在实例中找到自己想要demo.拿过来改一改,一个echarts图表就形成,毕竟人家做就是为了方便使用. 我是在vue中下面直接使用的e ...

  4. P4550 收集邮票

    P4550 收集邮票 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由 ...

  5. 安装Mysql 8.0的艰难体验

    背景: Mysql 8.0 以后版本,在性能等方面有了很大提升,而且在自动编号.Timestamp等字段的设置上有了很方便的进步,因此在一年前即开始将原有的基于5.5版本的服务器逐渐向8.0转移.但转 ...

  6. Spring-cloud微服务实战【三】:eureka注册中心(中)

      回忆一下,在上一篇文章中,我们创建了两个springboot项目,并且在consumer项目中通过restTemplate进行HTTP通信,成功访问到了producer提供的接口,思考一下这样的实 ...

  7. 常用crud

    增:@Insert("insert into  t_user (`last_name`, `sex`) values(#{lastName}, #{sex})")   删:@Del ...

  8. NOIP复活了

    众所周知,NOIP以一种奇葩而又不可避免的方式(CSP)复活了.

  9. 如何修改netbeans的系统字体?

    1. 打开/etc/netbeans.config 2. 找到netbeans_default_options 3. 追加 --fontsize 12

  10. ugui制作伸缩菜单

    制作一个类似与这种格式的菜单,可以伸缩滑动的.今天正好项目需要用到类似功能,所以尝试了一下,做出如下的效果 虽然只是一个思路,但是可以扩展.声明一个object物体,为but,通过GetCompone ...