\[\texttt{Preface}
\]

不开 long long 见祖宗。

\[\texttt{Description}
\]

你有一个 \(n\) 码的袋子,你还有 \(m\) 个盒子,第 \(i\) 个盒子的尺寸是 \(a_i\) ,这里的每一个 \(a_i\) 都是 \(2\) 的非负幂整数。

你可以把盒子分成大小相等的两部分。你的目标是完全装满袋子。

例如 \(n=10,a=[1,1,32]\) ,那么你必须把 \(32\) 码的盒子分成 \(16\) 码的两部分,然后把 \(16\) 码的盒子分开,你可以用 \(1\) 码,\(1\) 码,\(8\) 码的盒子装满袋子。

计算填充尺寸为 \(n\) 的袋子所需的最小分割数。

**多组数据,无解输出 -1 。 **

\[\texttt{Solution}
\]

先来讨论一下 -1 的情况:

考虑到分裂一个数不会影响到所有数的和。

那么我们将所有数都分裂成 \(1\) ,由于和不变,此时 \(1\) 的个数为 \(\sum\limits_{i=1}\limits^{m}a[i]\) ,也就是说小于等于 \(\sum\limits_{i=1}\limits^{m}a[i]\) 的数都可以被填出来。

故当 \(n>\sum\limits_{i=1}\limits^{m}a[i]\) 时,无解。

\(~\)

有一个看起来很正确的贪心策略:

将 \(n\) 二进制拆分成 \(2^{k_1},2^{k_2},...,2^{k_c}\) 。

然后从低位(\(2^{k_1}\))到高位(\(2^{k_c}\))贪心填数。

假设我们当前处理到的数为 \(2^{k_i}\) 。

首先考虑位数小于等于 \(k_i\) 的所有数中,能不能凑成 \(2^{k_i}\) ,若可以,直接填上去;否则考虑分裂位数大于 \(k_i\) 的所有数中最小的那一个,使其经过若干次分裂,分裂成 \(2^{k_i}\) 。

详情见 \(\texttt{Code}\) 。

\[\texttt{Code}
\]

#include<cstdio>
#include<cstring> #define RI register int using namespace std; const int N=100100; int T;
long long n; int m; int a[N]; long long ans,sum; long long cnt[65]; // cnt[k] : 2^k 的出现次数 long long calc(int k) // 计算小于等于 k 的位数中可以组成多少个 2^k
{
long long ans=0;
for(RI i=0;i<k;i++)
ans=(ans+cnt[i])/2;
return ans+cnt[k];
} void work()
{
memset(cnt,0,sizeof(cnt));
ans=sum=0; scanf("%lld%d",&n,&m); for(RI i=1;i<=m;i++)
scanf("%d",&a[i]),sum+=a[i]; if(n>sum)
{
puts("-1");
return;
} for(RI i=1;i<=m;i++)
for(RI j=0;j<=31;j++)
if((a[i]>>j)&1)
{
cnt[j]++;
break;
} for(RI k=0;k<=63;k++)
{
if(((n>>k)&1)==0)continue; // 如果 n 的第 k 位为 0 就 continue if(calc(k)) // 情况 1
cnt[k]--; // 理论上应该要让组成 2^k 的那些数减 , 但实际上这样做 , 在 calc 里也是正确的 else // 情况 2
{
for(RI p=k+1;p<=63;p++) // 找到位数大于 k 的数中最小的那个
if(cnt[p])
{
cnt[p]--; // 模拟分裂
for(RI i=k;i<p;i++)
cnt[i]++; // 模拟分裂
ans+=p-k; // 统计答案
break;
}
}
} printf("%lld\n",ans);
} int main()
{
scanf("%d",&T); while(T--) work(); return 0;
}

\[\texttt{Thanks} \ \texttt{for} \ \texttt{watching}
\]

题解【CF1303D Fill The Bag】的更多相关文章

  1. [CF1303D] Fill The Bag - 贪心

    Solution 考虑从低位往高位贪心,设当前在处理第 \(i\) 位,更低位剩余的部分一共可以拼出 \(cnt\) 个 \(2^i\) 如果 \(n\) 的这一位是 \(1\) ,那么这一位就需要处 ...

  2. I - Fill The Bag codeforces 1303D

    题解:注意这里的数组a中的元素,全部都是2的整数幂.然后有二进制可以拼成任意数.只要一堆2的整数幂的和大于x,x也是2的整数幂,那么那一堆2的整数幂一定可以组成x. 思路:位运算,对每一位,如果该位置 ...

  3. Codeforces1303D. Fill The Bag

    1e18对应2进制有58位,可以直接暴力模拟,因为读入的数都是2次幂,__builtin_ctz这个内置gcc函数可以算出二进制下末尾有几个0,读入时统计,然后从n的最低位开始判断,注意每次升位的时候 ...

  4. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  5. Educational Codeforces Round 82 (Rated for Div. 2) A-E代码(暂无记录题解)

    A. Erasing Zeroes (模拟) #include<bits/stdc++.h> using namespace std; typedef long long ll; ; in ...

  6. 【题解】Educational Codeforces Round 82

    比较菜只有 A ~ E A.Erasing Zeroes 题目描述: 原题面 题目分析: 使得所有的 \(1\) 连续也就是所有的 \(1\) 中间的 \(0\) 全部去掉,也就是可以理解为第一个 \ ...

  7. codeforces 148E Aragorn's Story 背包DP

    Aragorn's Story Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/probl ...

  8. [CF百场计划]#3 Educational Codeforces Round 82 (Rated for Div. 2)

    A. Erasing Zeroes Description You are given a string \(s\). Each character is either 0 or 1. You wan ...

  9. Codeforces题解集 1.0

    记录 Codeforces 2019年12月19日到 2020年2月12日 的部分比赛题 Educational Codeforces Round 82 (Rated for Div. 2) D Fi ...

随机推荐

  1. 《图解机器学习-杉山将著》读书笔记---CH1

    CH1 什么是机器学习 重点提炼 机器学习的种类: 常分为:监督学习.无监督学习.强化学习等 监督学习是学生从老师那获得知识,老师提供对错指示 无监督学习是在没有老师的情况下,学生自习 强化学习是在没 ...

  2. ASP.NET Core 启用跨域请求

    本文翻译整理自:https://docs.microsoft.com/en-us/aspnet/core/security/cors?view=aspnetcore-3.1 一 .Cross-Orig ...

  3. 【Java基础总结】数据库编程

    MySQL数据库查询 import java.sql.*; public class JdbcDemo1{ public static void main(String[] args){ try{ / ...

  4. 【笔试/面试题】中科创达——9.28(持续更新ing)

    1. 线程与进程的区别 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独 ...

  5. 【一起学源码-微服务】Hystrix 源码一:Hystrix基础原理与Demo搭建

    说明 原创不易,如若转载 请标明来源! 欢迎关注本人微信公众号:壹枝花算不算浪漫 更多内容也可查看本人博客:一枝花算不算浪漫 前言 前情回顾 上一个系列文章讲解了Feign的源码,主要是Feign动态 ...

  6. APICloud开发者进阶之路 | UIPickerView 模块示例demo

    本文出自APICloud官方论坛 rongCloud2  3.2.8 版本更新后添加了发送小视频接口,发送文件接口. rongCloud2  概述 融云是国内首家专业的即时通讯云服务提供商,专注为互联 ...

  7. vPlayer 模块Demo

    本文出自APICloud官方论坛 vPlayer iOS封装了AVPlayer视频播放功能(支持音频播放).iOS 平台上支持的视频文件格式有:WMV,AVI,MKV,RMVB,RM,XVID,MP4 ...

  8. Android Studio 图形化设计 UI 界面

    我们开发 Android 程序必定是从 UI 开始的 ,使用最新版的 Android Studio 可以在图形化界面下设计软件 UI, Android Studio 默认的布局是 Constraint ...

  9. 在eclipse里用jdbc连接MySQL

    进入MySQL控制台, 输入密码, 新建数据库test1并给用户授权,用户名“jaovo”, 创建表,id主键自增, 下载jdbc驱动包(jar文件) 把它放进tomcat的安装目录lib文件夹下(我 ...

  10. windows上apache配置php5

    windows上apache配置php5 重点:1.php5里的php.ini的extension_dir要改为绝对目录(带'/'斜杠),如果只是写个ext,在apache+mod_php里面是不会加 ...