P5530 [BalticOI 2002]双调路径

输入样例:
4 5 1 4
2 1 2 1
3 4 3 1
2 3 1 2
3 1 1 4
2 4 2 4

样例如下图

样例说明:

从1到4有4条路径。为1→2→4(费用为4,时间为5) ,1→3→4(费用为4,时间为5) ,1→2→3→4(费用为6,时间为4) ,1→3→2→4(费用为4,时间为10)。 1→3→4和1→2→4比1→3→2→4更好。有两种最佳路径:费用为4 ,时间为5(1→2→4和1→3→4)和费用为6,时间为4 (1→2→3→4)。

分析

最短路的边有两种权值,所以考虑在每个节点增加一维状态,d【i】【j】:到达节点i且费用为j时所用最少时间,则d【v】【j】=min{d【u】【j-cost(u,v)】}+time(u,v)

用SPFA即可, 533ms / 6.12MB,#8#9TLE,86分

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
#define R register
struct edge {
int v,w,t,h;
} e[610];
int h[110],d[110][10100],cnt,mn;
int u,v,w,n,m,S,T;
bool vis[110][10100];//第二维记得开大一些 inline void add(int u,int v,int w,int t) {
e[++cnt]=(edge) {v,w,t,h[u]},h[u]=cnt;
} queue<pair<int,int> >q;//二维记录节点u和所用cost
inline void spfa() {
memset(d,0x3f,sizeof d);
mn=99999999;
q.push(make_pair(S,d[S][0]=0)),vis[S][0]=1;
while(!q.empty()) {
u=q.front().first,w=q.front().second;
vis[u][w]=0,q.pop();
for (R int i=h[u],_w; i; i=e[i].h)
if ((_w=w+e[i].w)<=10010) {//w是到达u的cost,_w是由u到达v所用cost,_w超出100*100直接舍去
if (d[v=e[i].v][_w]>d[u][w]+e[i].t) {//同样的cost所用time是否比原来更少
d[v][_w]=d[u][w]+e[i].t;
if(!vis[v][_w]) q.push(make_pair(v,_w)),vis[v][_w]=1;
}
}
}
} int main() {
scanf("%d%d%d%d",&n,&m,&S,&T);
for (R int t; m; m--)
scanf("%d%d%d%d",&u,&v,&w,&t),add(u,v,w,t),add(v,u,w,t);
spfa(); cnt=0;
for (R int i=0; i<=10000; i++)
if(d[T][i]<mn) mn=d[T][i],cnt++;//cost逐渐增长,那么time只有小于其他的time才能算“最小路径”
printf("%d",cnt);
}

优化

不难想到,对于d【i】【j】,如果有k(k<j)且d【i】【k】<d【i】【j】(到达i所用cost和time都更少),那么d【i】【j】也就没必要更新了。所以加入剪枝:用树状数组维护d【i】【0~j】的最小值,只有d【i】【j】<最小值才更新

实际效率提高不少, 93ms / 9.93MB,AC代码:

#include<cstdio>
#include<queue>
#include<cstring>
#include<iostream>
using namespace std;
#define R register
struct edge {
int v,w,t,h;
} e[610];
int h[110],d[110][10100],tr[110][10100],cnt,mn;
int u,v,w,n,m,S,T;
bool vis[110][10100]; inline void add(int u,int v,int w,int t) {
e[++cnt]=(edge) {v,w,t,h[u]},h[u]=cnt;
} //用val更新d【x】【0~y】最小值
inline void upd(int x,int y,int val){
for (y++;y<10100;y+=y&-y) tr[x][y]=min(tr[x][y],val);
}//树状数组下标不能为0,所以y++ //查询d【x】【0~y】最小值
inline int qry(int x,int y){
int ans=1e7;
for (y++;y;y-=y&-y) ans=min(tr[x][y],ans);
return ans;
} queue<pair<int,int> >q;
inline void spfa() {
memset(d,0x3f,sizeof d);
memset(tr,0x3f,sizeof d);//别忘了初始化
q.push(make_pair(S,d[S][0]=0)),vis[S][0]=1;
upd(S,0,0);
while(!q.empty()) {
u=q.front().first,w=q.front().second;
vis[u][w]=0,q.pop();
for (R int i=h[u],_w; i; i=e[i].h)
if (qry(v=e[i].v,_w=w+e[i].w)>d[u][w]+e[i].t) {//只有d【i】【j】<最小值才更新
d[v][_w]=d[u][w]+e[i].t;
upd(v,_w,d[v][_w]);//更新最小值
if(!vis[v][_w]) q.push(make_pair(v,_w)),vis[v][_w]=1;
}
}
} int main() {
scanf("%d%d%d%d",&n,&m,&S,&T);
for (R int t; m; m--)
scanf("%d%d%d%d",&u,&v,&w,&t),add(u,v,w,t),add(v,u,w,t);
spfa(); cnt=0,mn=99999999;
for (R int i=0; i<=10000; i++)
if(d[T][i]<mn) mn=d[T][i],cnt++;
printf("%d",cnt);
}

题解 P5530 [BalticOI 2002]双调路径的更多相关文章

  1. P5530 [BOI 2002]双调路径

    题意描述 [BOI 2002]双调路径 题意描述的确实不是很清楚(出题人惜字如金). 给定一张有 \(n\) 个点,\(m\) 条边的无向图,每条边有两个权值,分别表示经过这个点的代价和时间. 同时给 ...

  2. Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  3. bzoj1375 双调路径

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  4. 【题解】最长递增路径 [51nod1274]

    [题解]最长递增路径 [51nod1274] 传送门:最长递增路径 \([51nod1274]\) [题目描述] 一个可能有自环有重边的无向图,每条边都有边权.输入两个整数 \(n,m\) 表示一共 ...

  5. [bzoj1375] [Baltic2002] Bicriterial routing 双调路径

    Description 如今的道路收费发展很快.道路的密度越来越大,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用. 路径是连续经过的道路组成的.总时间 ...

  6. 题解-[WC2011]最大XOR和路径

    [WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...

  7. PAT甲题题解-1003. Emergency (25)-最短路径+路径数目

    给出n个城市,m条边,起始点c1和目的点c2接下来给出n个城市的队伍数以及m条双向边问你求c1到c2的所有最短路径数目,以及其中经过的最多队伍数 先最短路dijkstra,同时建立vector数组pr ...

  8. 题解 [51nod1274] 最长递增路径

    题面 解析 这题一眼DP啊. 然而想了半天毫无思路. 后来看题解后发现可以按边权的大小顺序DP. 将边权从小到大排序,对于权值相同的边分为一组. 设\(f[i][0]\)表示经过当前权值的边后到达\( ...

  9. 【题解】[BalticOI 2014]friends

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3916 (BZOJ3916) 由题意可知 \(N\) 得为奇数,\(S\) 才存在,所以先特 ...

随机推荐

  1. Docker最全教程——从理论到实战(二十三)

    如何节约云端成本? 上云在大部分情况下就是为了降低成本,在这方面,主流的容器服务基本上都能够有效地降低成本——不仅能够高效自动化的管理和控制容器,而且不需支付Kubernetes 主节点的费用.不过, ...

  2. 如何成为一名AI工程师

    如何成为一名AI工程师 step 前端:js,html,找准方向开始累积知识! 计算机/数学专业 python anaconda IDE pycharm/jupyter 熟悉基础语法,了解数据结构 刷 ...

  3. ctf-ping命令执行绕过

    题目连接:http://ctf.klmyssn.com/challenges#Ping 命令执行绕过,试了试过滤了一些:一些命令 但是反引号可以执行命令 通过拼接,可以拼接出来:ls 命令 127.0 ...

  4. spring整合websocket,如何在服务端依赖注入service

    1.在pom.xml文件中添加jar包: <properties> <spring.version>4.0.5.RELEASE</spring.version> & ...

  5. UVA - 12333 Revenge of Fibonacci (大数 字典树)

    The well-known Fibonacci sequence is defined as following: F(0) = F(1) = 1 F(n) = F(n − 1) + F(n − 2 ...

  6. Structure preserving unsupervised feature selection

    Abstract • 使用自表示模型提取特征间的关系,结构保留约束来保持数据的局部流形结构: 1  Introduction • Contributions: (1)提出基于自表示模型的特征选择: ( ...

  7. uabntu命令行

    1.命令行    命令行中令字体大小变大:ctrl+shift+"+"    命令行中令字体大小变小:ctrl+'-'    不执行:ctrl+c    下一页:f    上一页: ...

  8. AntDesign(React)学习-11 使用mobx

    mobx 是由 Mendix.Coinbase.Facebook 开源和众多个人赞助商所赞助的. mobx和redux类似,也可以用来进行状态管理,并且更简单,更灵活.初次研究,先实现一个最简单的功能 ...

  9. HDU-2036 改革春风吹满地 (数学)

    Problem Description "改革春风吹满地,不会AC没关系;实在不行回老家,还有一亩三分地.谢谢!(乐队奏乐)" 话说部分学生心态极好,每天就知道游戏,这次考试如此简 ...

  10. 洛谷P1603 斯诺登的密码

    https://www.luogu.org/problem/P1603 #include<bits/stdc++.h> using namespace std; struct s { st ...