1102 - Problem Makes Problem

As I am fond of making easier problems, I discovered a problem. Actually, the problem is 'how can you make n by adding k non-negative integers?' I think a small example will make things clear. Suppose n=4 and k=3. There are 15 solutions. They are

1.      0 0 4

2.      0 1 3

3.      0 2 2

4.      0 3 1

5.      0 4 0

6.      1 0 3

7.      1 1 2

8.      1 2 1

9.      1 3 0

10.  2 0 2

11.  2 1 1

12.  2 2 0

13.  3 0 1

14.  3 1 0

15.  4 0 0

As I have already told you that I use to make problems easier, so, you don't have to find the actual result. You should report the result modulo 1000,000,007.

Input

Input starts with an integer T (≤ 25000), denoting the number of test cases.

Each case contains two integer n (0 ≤ n ≤ 106) and k (1 ≤ k ≤ 106).

Output

For each case, print the case number and the result modulo 1000000007.

Sample Input

Output for Sample Input

4

4 3

3 5

1000 3

1000 5

Case 1: 15

Case 2: 35

Case 3: 501501

Case 4: 84793457

分析:

题目意思是把 n个元素分成k组且允许有空位置, 这就用到隔板法中的允许若干个人(或位置)为空的问题, 因为把元素分成k组需要k-1个隔板,并且可以允许元素个数为空,所以隔板可以放在任意位置,隔板加上元素个数一共有n+k-1个位置,那么就相当于从n+k-1个位置中选出k-1个位置放隔板即c(n-k+1, k-1)。然后直接用费小马定理(a/b)%mod = a * (b(^mod-2))%mod;求下逆元就可以了。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 2000010
#define mod 1000000007
using namespace std;
long long d[N];
void init()
{
d[0] = 1;

for(int i = 1; i < N; i++)
d[i] = (i * d[i-1]) % mod;
}

long long quickmi(long long a, long long b)
{
long long sum = 1;

while(b)
{
if(b & 1)
sum = (sum * a) % mod;
a = (a * a) % mod;
b /= 2;
}

return sum;
}
int main(void)
{
int T , cas;
int n, k;
scanf("%d", &T);
init();
cas = 0;

while(T--)
{
cas++;
scanf("%d%d", &n, &k);

long long ans = quickmi((d[k-1] * d[n]) % mod, mod-2);
ans = (d[n+k-1] * ans ) % mod;

printf("Case %d: %lld\n", cas, ans);
}
return 0;
}

light oj 1102 - Problem Makes Problem组合数学(隔板法)的更多相关文章

  1. (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...

  2. Light OJ 1004 - Monkey Banana Problem(DP)

    题目大意: 给你一菱形的数字阵,问从最上面走到最下面所能获得的最大值是多少? #include<cstdio> #include<cstring> #include<io ...

  3. Light oj 1095 - Arrange the Numbers (组合数学+递推)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...

  4. Light OJ 1102

    题意: 给你一个数 N , 求分成 K 个数 (可以为 0 ) 的种数: 思路: 类似 在K个抽屉放入 N 个苹果, 不为0, 就是 在 n-1 个空隙中选 m-1个: 为 0, 就可以先在 K 个抽 ...

  5. lightoj 1102 - Problem Makes Problem

    1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...

  6. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  7. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  8. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  9. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

随机推荐

  1. mysql 向字段添加数据或者删除数据

    UPDATE table SET cids = CONCAT(cids , ',12') where id=id //向字段添加数据 //因为要用逗号分隔 所以在在前面加了一个逗号 UPDATE ta ...

  2. RocketMQ 解决 No route info of this topic 异常步骤

    原文地址:https://blog.csdn.net/chenaima1314/article/details/79403113 rocketmq运行时提示 No route info of this ...

  3. IDEA工具java开发之 常用窗口

    ◆project窗口  ◆structure窗口  ◆todo窗口  ◆favorites窗口  ◆termimal窗口 此窗口默认打开的时cmd,所以才这里可以操作任何cmd可以操作的内容, 一般次 ...

  4. 一题多解——Strategic Game

    点击打开题目 题目大意:给定一棵无根树,点亮其中某些点,使得这棵树的所有边都连接着一个以上的点亮的点 贪心中比较有挑战的题 由于如果点亮叶节点,就只会照亮一条边,但点亮它的父亲,就可以照亮除此边以外的 ...

  5. laravel aritisan命令大全

    1常用命令 显示某个命令的帮助 php artisan -h make:controller 实例命令 php artisan make:controller -r Api/TestControlle ...

  6. 百度API之路线规划

    近期参加一个课题,聊到路线规划问题,需要搜索两地点的最短线路距离以及最短用时等情况,然后就想着用借用百度API,做个参考 环境: python 3.6 主要问题: 1. 分析百度官方路线规划API了解 ...

  7. 吉哥系列故事——恨7不成妻(数位dp)

    吉哥系列故事--恨7不成妻 传送门 Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥 ...

  8. 从桌面到Web - 领域模型的创建

    天佑武汉,天佑中国.这次为全国人民作出巨大牺牲的武汉人是坚强和担当的. 这次疫情期间的自我隔离的一个副作用是第一次享受这个超长假期,本来想好好学习一下Web技术的,但家里的唯一一台计算机被占用,不得已 ...

  9. MGR安装

    二.环境准备 主机名 IP地址 角色 node2.com 172.16.8.101 primary node3.com 172.16.8.53 seconde node3.com 172.16.8.6 ...

  10. Codeforces Round #618 (Div. 2)

    题库链接 https://codeforces.ml/contest/1300 A. Non-zero 一个数组,每次操作可以给某个数加1,让这个数组的积和和不为0的最小操作数 显然如果有0的话,必须 ...