洛谷 3959 宝藏——枚举+状压dp
题目:https://www.luogu.org/problemnew/show/P3959
原来写了个不枚举起点的状压dp。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=(<<)+,INF=0x3f3f3f3f;
int n,m,lm,b[N][N],dis[M][N];
ll dp[M];
int main()
{
scanf("%d%d",&n,&m);lm=(<<n);
memset(b,0x3f,sizeof b);
int x,y,z;
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
b[x][y]=min(b[x][y],z);b[y][x]=b[x][y];
}
memset(dp,0x3f,sizeof dp);dp[]=;
for(int i=;i<=n;i++)dp[<<(i-)]=,dis[<<(i-)][i]=;
for(int s=;s<lm;s++)
for(int i=;i<=n;i++) if((s&(<<(i-)))==)
{
int d=(s|(<<(i-)));
for(int j=;j<=n;j++) if(s&(<<(j-)))
if(dp[s]+(ll)b[i][j]*dis[s][j]<dp[d])//b可能是0x3f3f3f
{
dp[d]=dp[s]+(ll)b[i][j]*dis[s][j];
memcpy(dis[d],dis[s],sizeof dis[s]);
dis[d][i]=dis[s][j]+;
}
}
printf("%lld\n",dp[lm-]);
return ;
}
但其错误是不能改dis。没有最优子结构的性质。
然后看了题解,发现如果枚举起点,就行了。
其实和原来想的差不多,但原来的不同起点的dis最后会混到一起,进而少遍历一些状态。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=(<<)+,INF=0x3f3f3f3f;
int n,m,lm,b[N][N],dis[N];
ll dp[M],ans=INF;
void dfs(int S)
{
for(int i=;i<=n;i++) if((S&(<<(i-)))==)
{
int D=(S|(<<(i-)));
for(int j=;j<=n;j++) if(S&(<<(j-))&&b[i][j]<INF)
if(dp[S]+b[i][j]*dis[j]<dp[D])
{
dp[D]=dp[S]+b[i][j]*dis[j];
dis[i]=dis[j]+;
dfs(D);
dis[i]=;
}
}
}
int main()
{
scanf("%d%d",&n,&m);lm=(<<n);
memset(b,0x3f,sizeof b);
int x,y,z;
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
b[x][y]=min(b[x][y],z);b[y][x]=b[x][y];
}
for(int i=;i<=n;i++)
{
memset(dp,0x3f,sizeof dp);dp[<<(i-)]=;
memset(dis,0x3f,sizeof dis);dis[i]=;
dfs(<<(i-));
ans=min(ans,dp[lm-]);
}
printf("%lld\n",ans);
return ;
}
洛谷 3959 宝藏——枚举+状压dp的更多相关文章
- 洛谷P3959 宝藏(状压dp)
传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...
- 洛谷 P3959 宝藏【状压dp】
一开始状态设计错了-- 设f[i][s]为当前与根节点联通状况为s,最深深度为i 转移的话枚举当前没有和根联通的点集,预处理出把这些点加进联通块的代价(枚举s中的点和当前点的连边乘以i即可),然后用没 ...
- 【洛谷4941】War2 状压Dp
简单的状压DP,和NOIP2017 Day2 找宝藏 代码几乎一样.(比那个稍微简单一点) f[i][j] ,i代表点的状态,j是当前选择的点,枚举上一个选到的点k 然后从f[i-(1<< ...
- 洛谷 P1433 吃奶酪 状压DP
题目描述 分析 比较简单的状压DP 我们设\(f[i][j]\)为当前的状态为\(i\)且当前所在的位置为\(j\)时走过的最小距离 因为老鼠的坐标为\((0,0)\),所以我们要预处理出\(f[1& ...
- 洛谷 P3112 后卫马克 —— 状压DP
题目:https://www.luogu.org/problemnew/show/P3112 状压DP...转移不错. 代码如下: #include<iostream> #include& ...
- 2018.11.02 洛谷P2831 愤怒的小鸟(状压dp)
传送门 状压一眼题. 直接f[i]f[i]f[i]表示未选择状态为iii时的最小次数. 然后考虑现在怎么转移. 显然可以直接枚举消掉某一个点或者某两个点,复杂度O(n22n)O(n^22^n)O(n2 ...
- 洛谷P2473奖励关——状压DP
题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...
- 洛谷P4590 [TJOI2018]游园会(状压dp LCS)
题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...
- 洛谷 P1879 玉米田(状压DP入门题)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int M,N; int plant[maxn][maxn];/ ...
随机推荐
- 解决Eclipse建立Maven Web项目后找不到src/main/java资源文件夹的办法
问题如题,明细见下图: 解决方法: 在项目上右键选择properties,然后点击java build path,在Librarys下,编辑JRE System Library,选择workspace ...
- Linux 实用指令(8)--网络配置
目录 网络配置 1 Linux网络配置原理图(含虚拟机) 2 查看网络IP和网关 2.1 查询虚拟网络编辑器 2.2 修改IP地址(修改虚拟网络的IP) 2.3 查看网关 2.4 查看windows环 ...
- 连接RDS数据库
- centos 7 开机优化shell
vim start_init.sh #!/bin/bash#####dns echo "nameserver 114.114.114.114" >/etc/resolv.c ...
- 人脸识别的LOSS(上)
超多分类的Softmax 2014年CVPR两篇超多分类的人脸识别论文:DeepFace和DeepID Taigman Y, Yang M, Ranzato M A, et al. Deepface: ...
- leetcode-142-环形链表②
题目描述: 方法一:O(n) O(n) # Definition for singly-linked list. # class ListNode(object): # def __init__(se ...
- 2016.11.5初中部上午NOIP普及组比赛总结
2016.10.29初中部上午NOIP普及组 这次比赛算是考的最差的一次之一了,当中有四分之三是DP. 进度: 比赛:没分+0+没分+40=40 改题:AC+0+没分+40=140 TurnOffLi ...
- csps模拟67神炎皇,降雷皇,幻魔皇题解
题面:https://www.cnblogs.com/Juve/articles/11648975.html 神炎皇: 打表找规律?和$\phi$有关? 答案就是$\sum\limits_{i=2}^ ...
- 0810NOIP模拟测试赛后总结
明日之后将是什么. 悲哀, 还是希望? 60分我没脸了…… 所以T1好不容易想到了正解结果实现打挂w0了…… 贪心想的还是相当完美的. 不知道我咋想的开了1e6个栈然后dfs模拟结果MLE原地自爆…… ...
- Jenkins 简单安装使用
一.介绍 Jenkins 是一款业界流行的开源持续集成工具,广泛用于项目开发,具有自动化构建.测试和部署等功能.由于 jenkins是基于java环境运行的,所以首先需要安装java环境 二.安装 1 ...