soundtouch 变速算法matlab实现
soundtouch变速主要采用WSOLA算法来进行变速。
http://www.surina.net/soundtouch/
https://blog.csdn.net/suhetao/article/details/5863477
The principle of WSOLA refer to following figure:
There are three important parameter: SequenceMs, overlapMs, seekWindowMs.
These parameters affect to the time-stretch algorithm as follows:
- DEFAULT_SEQUENCE_MS: This is the default length of a single processing sequence in milliseconds which determines the how the original sound is chopped in the time-stretch algorithm. Larger values mean fewer sequences are used in processing. In principle a larger value sounds better when slowing down the tempo, but worse when increasing the tempo and vice versa.
By default, this setting value is calculated automatically according to tempo value.
- DEFAULT_SEEKWINDOW_MS: The seeking window default length in milliseconds is for the algorithm that seeks the best possible overlapping location. This determines from how wide a sample "window" the algorithm can use to find an optimal mixing location when the sound sequences are to be linked back together.
The bigger this window setting is, the higher the possibility to find a better mixing position becomes, but at the same time large values may cause a "drifting" sound artifact because neighboring sequences can be chosen at more uneven intervals. If there's a disturbing artifact that sounds as if a constant frequency was drifting around, try reducing this setting.
By default, this setting value is calculated automatically according to tempo value.
- DEFAULT_OVERLAP_MS: Overlap length in milliseconds. When the sound sequences are mixed back together to form again a continuous sound stream, this parameter defines how much the ends of the consecutive sequences will overlap with each other.
This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a smaller value on this.
function out = check_limits(in, min, max)
if in < min
out = min;
else if in > max
out = max;
else
out = in;
end
end
function [seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo)
overlapMs = 8;
autoseq_tempo_low = 0.5;
autoseq_tempo_top = 2.0;
autoseq_at_min = 90;
autoseq_at_max = 40;
autoseq_k =(autoseq_at_max - autoseq_at_min) / (autoseq_temp_top - auto_temp_low);
autoseq_c = autoseq_at_min -autoseq_k * autoseq_temp_low;
autoseek_at_min = 20;
autoseek_at_max = 15;
autoseek_k =(autoseek_at_max - autoseek_at_min) / (autoseq_temp_top - auto_temp_low);
autoseek_c = autoseek_at_min -autoseek_k * autoseq_temp_low;
%calc sequenceMs
seq = autoseq_c + autoseq_k * tempo;
seq = check_limits(seq, autoseq_at_max, autoseq_at_min);
sequenceMs = round(seq);
seek= autoseek_c + autoseek_k * tempo;
seek= check_limits(seek, autoseek_at_max, autoseek_at_min);
seekMs = round(seek)
seekWindowLength = sequenceMs * fs / 1000;
seekLength = seekMs * fs /1000;
overlapLength = overlapMs * fs / 1000;
overlapLength = overlapLength - mod(overlapLength, 8);
end
function corr = calcCrossCorr(mixingSeg, compareSeg)
len = length(compareSeg(:,1));
corr = 0;
norm = 0;
for i = 1: 1 : len
corr = corr + mixingSeg(i) * compareSeg(i);
norm = norm + mixingSeg(i) * mixingSeg(i);
end
corr = corr / sqrt(norm);
end
function offset = seekBestOverlapPosition(seekWindow, compareSeg, overlapLength, seekLength)
bestCorr = calcCrossCorr(seekWindow(1:overlapLength, 1), compareSeg);
offset = 1;
for i = 2 : 1 : seekLength
corr = calcCrossCorr(seekWindow(i:i + overlapLength, 1), compareSeg);
if corr > bestCorr
bestCorr = corr;
offset = i;
end
end
end
function output = overlap(rampUp, rampDown)
len=length(rampDown);
for i = 1:1:len
output(i,1) = rampUp(i) * i / len + rampDown(i) * (len - i) / len;
end
end
function [output, outpos, lastCompare, inpos] = processSamples(input, inputLen, expectOutputLen, compareSeg, overlapLength, seekLength, seekWindowLength, tempo, isBeginning)
nominalSkip = tempo * (seekWindowLength - overlapLength);
sampleReq = max(round(nominalSkip) + overlapLength, seekWindow);
inpos = 1;
outpos = 1;
offset = 0;
skipFract = 0;
while inputLen - inpos >= sampleReq
if isBeginning == 0
offset = seekBestOverlapPosition(input(inpos : inpos + overlapLength + seekLength - 1, 1), compareSeg, overlapLength, seekLength);
output(outpos:outpos + overlapLength - 1, 1) = overlap(input(inpos + offset : inpos + offset + overlapLength - 1, 1), compareseg);
ouputpos = outpos + overlapLength;
offset = offset + overlapLength;
else
isBeginning = 0;
skip = round(tempo * overlapLength);
skipFract = skipFract - skip;
end
temp = (seekWindowLength - 2 * overlapLength);
if outpos + tmep < expectOutputLen
output(outpos : outpos + temp - 1, 1) = input (inpos + offset : inpos + offset + temp - 1, 1);
outpos = outpos + temp;
else
output(outpos : expectOutputLen, 1) = input (inpos + offset : inpos + offset + expectOutputLen- outpos, 1);
outpos = expectOutputLen;
beak;
end
compareSeg = input (inpos + offset + temp: inpos + offset + temp +overlapLength - 1, 1);
skipFract = skipFract + nominalSkip;
ovlSkip = floor(skipFract);
skipFract = skipFract - ovlSkip;
inpos = inpos + ovlSkip;
end
lastCompare = compareSeg;
end
function output = changeTempo(input, fs, tempo)
inputLen = length(input(:,1));
outputLen = round(inputLen / tempo);
output = zeros(outputLen, 1);
[seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo);
isBeginning = 1;
compareBuf = zeros(overlapLength, 1);
expectOutLen = outputLen;
[output, outpos, compareBuf, inpos] = processSamples(input, inputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);
remainningSamples = inputLen - inpos;
%append zeros to the remainning data
remainningLen = remainningSamples + 200 * 128;
remainningInput = zeros(remainningLen, 1);
remainningInput(1:remainningSamples, 1) = input(inpos:inpos + remainningSamples - 1, 1);
if outputLen > outpos
expectOutLen = outputLen - outpos + 1;
isBeginning = 0;
[tempOutput, tempOutpos, compareBuf, inpos] = processSamples(remainingInput, remainingInputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);
output(outpos:outputLen, 1) = tempOutput(1: tempOutpos);
end
end
main.m:
clc;
clear all;
[input fs] = wavread('test.wav');
tempo = 2;
output = changeTempo(input, fs, tempo);
wavwrite(output, fs, 'output.wav');
soundtouch 变速算法matlab实现的更多相关文章
- soundtouch变速wsola算法之改进
soundtouch变速算法很类似sola算法,细看才知道是wsola算法. 上个星期有个需求,将该变速应用到直播的包处理,有点类似于webrtc的netEQ处理机制. 直接使用soundtouch, ...
- OLA音频变速算法的仿真与剖析
前段时间,在尝试音乐节拍数的提取时,终于有了突破性的进展,效果基本上比市面上的许多商业软件还要好,在作节拍数检测时,高频信息作用不大, 通过重采样减小运算量.重采样让我想起了在学校里面做的变速变调算法 ...
- 标准差分进化算法matlab程序实现(转载)
标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [ ...
- 密度峰值聚类算法MATLAB程序
密度峰值聚类算法MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC) 数据见:MATL ...
- GWO(灰狼优化)算法MATLAB源码逐行中文注解(转载)
以优化SVM算法的参数c和g为例,对GWO算法MATLAB源码进行了逐行中文注解. tic % 计时器 %% 清空环境变量 close all clear clc format compact %% ...
- 每天进步一点点------Alpha半透明图形叠加算法Matlab+Verilog实现
Alpha图形叠加算法Matlab+Verilog实现 1.1. Alpha算法的研究 Alpha通道是一个8位的灰度通道,该通道用256级灰度来记录图像中的透明度信息,定义透明.不透明和半透明区域, ...
- 医学CT图像特征提取算法(matlab实现)
本科毕设做的是医学CT图像特征提取方法研究,主要是肺部CT图像的特征提取.由于医学图像基本为灰度图像,因此我将特征主要分为三类:纹理特征,形态特征以及代数特征,每种特征都有对应的算法进行特征提取. 如 ...
- 蚁群算法matlab实现
大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang 以下用matlab实现蚁群算法: %蚂蚁算法test %用产生的一个圆上的十个点来检验蚂蚁 ...
- 多源最短路Floyd 算法————matlab实现
弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...
随机推荐
- PHP0014:PHP操作文件
查看源代码 用这种方式抓取网页,和原始网页一模一样. 数组不能用echo 将一个网页保存到本地html文件
- python数据类型(第三弹)
本文着重介绍python语言的两种数据类型——列表和元组 列表 相比于整型.浮点型等数据类型,列表是一个复合数据类型,它更像一个容器,可以容纳多种不同类型的数据. 如上图:列表a中装进去了字符串&qu ...
- Atlantis HDU - 1542 线段树+扫描线 求交叉图形面积
//永远只考虑根节点的信息,说明在query时不会调用pushdown //所有操作均是成对出现,且先加后减 // #include <cstdio> #include <cstri ...
- JN_0018:运行窗口不显示
1,新建vbs文件 CreateObject("WScript.Shell").Run "cmd /c E:/OneDrive/NodeJS/WebServer/star ...
- Pikachu-Sql Inject(SQL注入)
在owasp发布的top10排行榜里,注入漏洞一直是危害排名第一的漏洞,其中注入漏洞里面首当其冲的就是数据库注入漏洞.一个严重的SQL注入漏洞,可能会直接导致一家公司破产!SQL注入漏洞主要形成的原因 ...
- Java泛型(T)与通配符?
前言:使用泛型的目的是利用Java编译机制,在编译过程中帮我们检测代码中不规范的有可能导致程序错误的代码.例如,我们都知道list容器可以持有任何类型的数据,所以我们可以把String类型和Integ ...
- React.js高阶函数的定义与使用
/* 高阶函数的简单定义与使用 一: 先定义一个普通组件 二: 用function higherOrder(WrappendComponent) { return } 将组件包裹起来,并用export ...
- Arduino上搭建ESP8266环境
我尝试了各种方法都无法在Arduino上安装ESP8266的环境,最后发现离线安装最稳妥. 1. 下载安装包,提取码:pktw 2. 将安装包内所有文件拷贝到C:\Users\Administrato ...
- 《80x86汇编语言程序设计教程》第二章课后题答案
2.5 习题 2.1 数据寄存器 1. 八个通用寄存器除了各自规定的专门用途外,它们均可以用于传送和暂存数据,可以保存算术逻辑运算中的各种操作数和运算结果. 2.1 AX和Al寄存器又称为累加器(ac ...
- t-SNE and PCA
1.t-SNE 知乎 t-分布领域嵌入算法 虽然主打非线性高维数据降维,但是很少用,因为 比较适合应用于可视化,测试模型的效果 保证在低维上数据的分布与原始特征空间分布的相似性高 因此用来查看分类器的 ...