题意:长度为n的序列,相邻两个或单独一个可以划分到一个组,每个元素最多处于一个组。

问恰好分割成k(1<=k<=m)段有多少种方案?

标程:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=;
const int rt=;
const int N=;
int l,_n,pos[N],n,k,a[N],b[N],c[N],x1[N],x2[N],x3[N],x4[N],w[N],wn,inv_n;
int ksm(int x,int y)
{
int res=;
while (y) {if (y&) res=(ll)res*x%mod; x=(ll)x*x%mod; y>>=;}
return res;
}
void init(int n)
{
l=;
while ((<<l)<=n) l++;//注意位长的处理,判断条件是(1<<l)<=n
_n=<<l;wn=ksm(rt,<<-l);
w[]=;inv_n=ksm(_n,mod-);
for (int i=;i<_n;i++)
w[i]=(ll)w[i-]*wn%mod,pos[i]=(i&)?pos[i-]|(<<(l-)):pos[i>>]>>;
}
void fft(int *a,int op)
{
for (int i=;i<_n;i++) if (i<pos[i]) swap(a[i],a[pos[i]]);
int len=,id=_n;
for (int i=;i<l;i++)
{
int wn=w[id>>=];
for (int j=;j<_n;j+=len*)
for (int k=j,w=;k<j+len;k++)
{
int l=a[k],r=(ll)a[k+len]*w%mod;
a[k]=((ll)l+r)%mod;a[k+len]=((ll)l-r+mod)%mod;
w=(ll)w*wn%mod;
}
len<<=;
}
if (op==-) {
reverse(a+,a+_n);
for (int i=;i<_n;i++) a[i]=(ll)a[i]*inv_n%mod;
}
}
void merge(int *a,int *b,int *c)
{
c[]=;
for (int i=;i<=k;i++) c[i]=((ll)((ll)b[i]+b[i-])%mod+a[i-])%mod;
for (int i=k+;i<_n;i++) c[i]=;
}
void solve(int n)
{
if (n==)
{
a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
if (n==)
{
a[]=a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
solve(n/-);
merge(a,b,c);
for (int i=k+;i<_n;i++) a[i]=b[i]=;
fft(a,);fft(b,);fft(c,);
for (int i=;i<_n;i++)
{
x1[i]=(ll)a[i]*a[i]%mod;
x2[i]=(ll)b[i]*b[i]%mod;
x3[i]=(ll)a[i]*b[i]%mod;
x4[i]=(ll)b[i]*c[i]%mod;
}
fft(x1,-);fft(x2,-);fft(x3,-);fft(x4,-);
for (int i=;i<_n;i++)//从1开始,注意边界
x2[i]=((ll)x2[i]+x1[i-])%mod,x4[i]=((ll)x4[i]+x3[i-])%mod;
if (n&)
{
merge(x2,x4,b);
for (int i=;i<_n;i++) a[i]=x4[i];
}else
for (int i=;i<_n;i++) a[i]=x2[i],b[i]=x4[i];
}
int main()
{
scanf("%d%d",&n,&k);
init(*k+); solve(n);
for (int i=;i<=k;i++) printf("%d ",a[i]);
puts("");
return ;
}

题解:fft+分治+dp

可以得到递推式:f[i(元素数)][j(段数)]=f[i-1][j-1]+f[i-2][j-1]+f[i-1][j]。

f(n)=f(n-1)*(1+x)+f(n-2)*x.

一个方法是带权斐波那契通项展开,并不会多项式开根。

另一个方法,考虑f(a+b)=f(a)*f(b)+f(a-1)*f(b-1)*x。(根据在a,b处能否断开讨论)

分治下去,f(i),f(i+1)->f(i+2) f(2i+2)=f(i+1)*f(i+1)+f(i)*f(i)*x

f(2i+3)=f(i+1)*f(i+2)+f(i)*f(i+1)*x  f(2i+4)=f(i+2)*f(i+2)+f(i+1)*f(i+1)*x

注意n的奇偶要讨论,m以后的k不用计算。时间复杂度O(mlog^2(m))。

CF755G PolandBall and Many Other Balls/soj 57送饮料的更多相关文章

  1. 题解-CF755G PolandBall and Many Other Balls

    题面 CF755G PolandBall and Many Other Balls 给定 \(n\) 和 \(m\).有一排 \(n\) 个球,求对于每个 \(1\le k\le m\),选出 \(k ...

  2. CF755G PolandBall and Many Other Balls 题解

    从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解 一个常数和复杂度都很大的题解 令 \(dp_{i,j}\) 为 在 \(i\) 个球中选 \(j\) 组的 ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  4. POJ 3687 Labeling Balls()

    Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...

  5. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  6. codeforces 755C. PolandBall and Forest

    C. PolandBall and Forest time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. codeforces 755F F. PolandBall and Gifts(贪心+多重背包)

    题目链接: F. PolandBall and Gifts time limit per test 1.5 seconds memory limit per test 256 megabytes in ...

  8. Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

    F. PolandBall and Gifts   It's Christmas time! PolandBall and his friends will be giving themselves ...

  9. 【codeforces 755B】PolandBall and Game

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. js将数字转换成货币形式的字符

    因为UI图上有的地方需要将数字转成货币形式的,例如:1234567转成  1,234,567  这样的,不过之前没弄过,然后在网上搜了下方法,参考了下面这篇文章 参考文章:JS将数字转成货币形式的简单 ...

  2. TypeScript和JavaScript的区别

    JavaScript和TypeScript的对比 注:参考https://juejin.im/entry/5a52ed336fb9a01cbd586f9f做的笔记 概要介绍 JavaScript Ja ...

  3. 关于UEditor的使用配置(图片上传配置)

    接到新需求,需要在平台上使用富文本编辑器,我这次选择了百度的UEditor 在官网上下载l.net版本的1.4.3开发版本 http://ueditor.baidu.com/website/downl ...

  4. linux下如何挂载磁盘

    1.显示磁盘使用情况:#df 2.显示磁盘:#fdisk -l 3.格式化分区:#mkfs.ext4 /dev/vdb1           //注:将/dev/vdb1格式化为ext4类型(文件类型 ...

  5. HDU-3001 TSP+三进制DP

    题意:给出一个无向图,每个点不能被经过超过两次,选择一个起点问经过所有点至少一次的最短路径. 解法:注意此题是每个点不能经过超过两次,这和一般的TSP问题不同.但是也没有使得此题变得很复杂,原来的状态 ...

  6. 单核cpu实现多任务原理

  7. java多线程面试题选择题大全含答案

    v java多线程面试题选择题大全含答案 java多线程面试题选择题大全含答案 1.下面程序的运行结果()(选择一项)public static void main(String[] args) {T ...

  8. Postman Interceptor安装成功却无法在Postman启用的解决办法

    新手在使用 Postman 和Postman Interceptor的过程中总会遇到各种各样的问题.我们 chrome插件网 争取在这里汇总大家遇到的所有的问题的解决方案.今天要分享的解决方案问题是: ...

  9. 初试avalon

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 管理员技术(六): 硬盘分区及格式化、 新建一个逻辑卷、调整现有磁盘的分区、扩展逻辑卷的大小、添加一个swap分区

    一.硬盘分区及格式化 问题: 本例要求熟悉硬盘分区结构,使用fdisk分区工具在磁盘 /dev/vdb 上按以下要求建立分区: 1> 采用默认的 msdos 分区模式        2> ...