题意:长度为n的序列,相邻两个或单独一个可以划分到一个组,每个元素最多处于一个组。

问恰好分割成k(1<=k<=m)段有多少种方案?

标程:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=;
const int rt=;
const int N=;
int l,_n,pos[N],n,k,a[N],b[N],c[N],x1[N],x2[N],x3[N],x4[N],w[N],wn,inv_n;
int ksm(int x,int y)
{
int res=;
while (y) {if (y&) res=(ll)res*x%mod; x=(ll)x*x%mod; y>>=;}
return res;
}
void init(int n)
{
l=;
while ((<<l)<=n) l++;//注意位长的处理,判断条件是(1<<l)<=n
_n=<<l;wn=ksm(rt,<<-l);
w[]=;inv_n=ksm(_n,mod-);
for (int i=;i<_n;i++)
w[i]=(ll)w[i-]*wn%mod,pos[i]=(i&)?pos[i-]|(<<(l-)):pos[i>>]>>;
}
void fft(int *a,int op)
{
for (int i=;i<_n;i++) if (i<pos[i]) swap(a[i],a[pos[i]]);
int len=,id=_n;
for (int i=;i<l;i++)
{
int wn=w[id>>=];
for (int j=;j<_n;j+=len*)
for (int k=j,w=;k<j+len;k++)
{
int l=a[k],r=(ll)a[k+len]*w%mod;
a[k]=((ll)l+r)%mod;a[k+len]=((ll)l-r+mod)%mod;
w=(ll)w*wn%mod;
}
len<<=;
}
if (op==-) {
reverse(a+,a+_n);
for (int i=;i<_n;i++) a[i]=(ll)a[i]*inv_n%mod;
}
}
void merge(int *a,int *b,int *c)
{
c[]=;
for (int i=;i<=k;i++) c[i]=((ll)((ll)b[i]+b[i-])%mod+a[i-])%mod;
for (int i=k+;i<_n;i++) c[i]=;
}
void solve(int n)
{
if (n==)
{
a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
if (n==)
{
a[]=a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
solve(n/-);
merge(a,b,c);
for (int i=k+;i<_n;i++) a[i]=b[i]=;
fft(a,);fft(b,);fft(c,);
for (int i=;i<_n;i++)
{
x1[i]=(ll)a[i]*a[i]%mod;
x2[i]=(ll)b[i]*b[i]%mod;
x3[i]=(ll)a[i]*b[i]%mod;
x4[i]=(ll)b[i]*c[i]%mod;
}
fft(x1,-);fft(x2,-);fft(x3,-);fft(x4,-);
for (int i=;i<_n;i++)//从1开始,注意边界
x2[i]=((ll)x2[i]+x1[i-])%mod,x4[i]=((ll)x4[i]+x3[i-])%mod;
if (n&)
{
merge(x2,x4,b);
for (int i=;i<_n;i++) a[i]=x4[i];
}else
for (int i=;i<_n;i++) a[i]=x2[i],b[i]=x4[i];
}
int main()
{
scanf("%d%d",&n,&k);
init(*k+); solve(n);
for (int i=;i<=k;i++) printf("%d ",a[i]);
puts("");
return ;
}

题解:fft+分治+dp

可以得到递推式:f[i(元素数)][j(段数)]=f[i-1][j-1]+f[i-2][j-1]+f[i-1][j]。

f(n)=f(n-1)*(1+x)+f(n-2)*x.

一个方法是带权斐波那契通项展开,并不会多项式开根。

另一个方法,考虑f(a+b)=f(a)*f(b)+f(a-1)*f(b-1)*x。(根据在a,b处能否断开讨论)

分治下去,f(i),f(i+1)->f(i+2) f(2i+2)=f(i+1)*f(i+1)+f(i)*f(i)*x

f(2i+3)=f(i+1)*f(i+2)+f(i)*f(i+1)*x  f(2i+4)=f(i+2)*f(i+2)+f(i+1)*f(i+1)*x

注意n的奇偶要讨论,m以后的k不用计算。时间复杂度O(mlog^2(m))。

CF755G PolandBall and Many Other Balls/soj 57送饮料的更多相关文章

  1. 题解-CF755G PolandBall and Many Other Balls

    题面 CF755G PolandBall and Many Other Balls 给定 \(n\) 和 \(m\).有一排 \(n\) 个球,求对于每个 \(1\le k\le m\),选出 \(k ...

  2. CF755G PolandBall and Many Other Balls 题解

    从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解 一个常数和复杂度都很大的题解 令 \(dp_{i,j}\) 为 在 \(i\) 个球中选 \(j\) 组的 ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  4. POJ 3687 Labeling Balls()

    Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...

  5. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  6. codeforces 755C. PolandBall and Forest

    C. PolandBall and Forest time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. codeforces 755F F. PolandBall and Gifts(贪心+多重背包)

    题目链接: F. PolandBall and Gifts time limit per test 1.5 seconds memory limit per test 256 megabytes in ...

  8. Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

    F. PolandBall and Gifts   It's Christmas time! PolandBall and his friends will be giving themselves ...

  9. 【codeforces 755B】PolandBall and Game

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. Codeforces 251C Number Transformation DP, 记忆化搜索,LCM,广搜

    题意及思路:https://blog.csdn.net/bossup/article/details/37076965 代码: #include <bits/stdc++.h> #defi ...

  2. qdatatime大小

    QDateTime time1; QDateTime time2; uint stime = time1.toTime_t(); uint etime = time2.toTime_t(); int ...

  3. fiddler增加ip以及响应时间列

    最近打算看一下移动端app的响应等请求,这里打算用fillder来查看appium的模拟出发请求的操作来查看结果, 所以我们需要在左侧的面板增加我们所需要的ip,响应时间等数据以方便我们查看 fidd ...

  4. 08-01-json-loggin-模块

    复习 ''' ATM: -- start.py BASE_DIR = os.path.dirname(__file__) sys.path.append(BASE_DIR) -- conf -- li ...

  5. 泛型(Java 5 开始)

    前言 Java 5 开始之前,从集合读取的数据都必须进行类型转换,如果插入错误的数据就会报错. 有了泛型,编译器会自动为你的插入进行转换,并在插入时告知是否插入了类型错误的对象. 将类型由原来的具体的 ...

  6. Vue2.0源码思维导图-------------Vue 构造函数、原型、静态属性和方法

    已经用vue有一段时间了,最近花一些时间去阅读Vue源码,看源码的同时便于理解,会用工具画下结构图. 今天把最近看到总结的结构图分享出来.希望可以帮助和其他同学一起进步.当然里边可能存在一些疏漏的,或 ...

  7. html+css 常用布局

    1.中间固定宽度,两侧自适应 1.1 flex布局 <!DOCTYPE html><html lang="en"> <head> <met ...

  8. socket模拟通信

    import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java ...

  9. 用 Flask 来写个轻博客 (1) — 创建项目

    目录 目录 前言 扩展阅读 部署开发环境 创建 Github 项目 前言 一步一步的实现一个 Flask 轻博客项目启动,最新的代码会上传到 Github. 扩展阅读 欢迎使用 Flask - vir ...

  10. 访问者模式和 ASM

    文章目录 一. 概述 & 定义 二. 示例 2.1 创建抽象元素 2.2 创建具体元素 2.3 创建抽象访问者 2.4 创建具体访问者 2.5 访问者代码调用 三. ASM 中的访问者模式 3 ...