归一化:就是将数据通过某种算法,限制需要的一定范围内。

归一化的目的:简而言之,是使得没有可比性的数据变得具有可比性,同时又保持相比较的两个数据之间的相对关系,如大小关系;或是为了作图,原来很难在一张图上作出来,归一化后就可以很方便的给出图上的相对位置等。

矩阵归一化:normalize 函数

void normalize(InputArry src,InputOutputArray dst,double alpha = 1,double beta = 0,int norm_type = NORM_L2,int dtype = -1,InputArray mark = noArry())

  • src,输入图像,Mat 类对象即可。
  • dst,函数调用后的结果存在这里,和原图像具有一样的尺寸和类型。
  • alpha,①值归一化,表示所乘系数;②范围归一化,表示范围界限,一般当作下界。
  • beta,仅范围归一化用到,表示范围另一界限。
  • norm_type,归一化选择的数学公式。
NORM_L1:
 
NORM_INF:
 
NORM_L2:
 
NORM_MINMAX: A不属于{ max(Ai) , min(Ai) },当 A等于 max(Ai) 时 p = 1,等于 min(Ai) 时 p = 0 
 
 
 
  • dtype,为负时,输出图像深度等于输入图像,否则深度为 dtype 类型。一般选择默认值。
  • mark,掩码。若有感兴趣区域,则只对该区域进行操作。

值归一化:所有 NORM_XXX 公式均可使用

alpha != 0,beta = 0,根据数学公式计算出来的所有值均 * alpha。

示例:alpha = 45

 

 

范围归一化:必须且仅可以使用 NORM_MINMAX 公式

alpha !=0,beta != 0,假设 alpha < beta,即归一化范围 [alpha,beta],简记为 [a,b]。

  1. 首先找到样本数据的最小值 Min 及最大值 Max
  2. 计算系数为:k =(b - a) / (Max - Min)
  3. 得到归一化到 [a,b] 区间的数据:

示例:alpha = 10,beta = 45

(呀呀,网上好多相关文章,但看完还是迷糊,现在终于明白了,(●'◡'●) 开心!)

opencv —— normalize 矩阵归一化的更多相关文章

  1. OpenCV在矩阵上的卷积

    转载请注明出处!!!http://blog.csdn.net/zhonghuan1992 OpenCV在矩阵上的卷积 在openCV官网上说是戴面具,事实上就是又一次计算一下矩阵中的每个value,那 ...

  2. OpenCV利用矩阵实现图像旋转

    利用OpenCV的矩阵操作实现图像的逆时针旋转90度操作 代码 Mat src = imread("C:\\Users\\fenggl\\Desktop\\测试.jpg",MREA ...

  3. OpenCV之图像归一化(normalize)

    什么图像归一化 通俗地讲就是将矩阵的值通过某种方式变到某一个区间内 图像归一化的作用 目前能理解的就是归一化到某个区间便于处理,希望高人可以指点 opencv文档中的介绍 C++: void norm ...

  4. Opencv normalize

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  5. OpenCV的矩阵合并方法

    有的时候我们需要将几个矩阵按行或者按列进行合并成一个大矩阵,这在Matlab里面非常的简单,但在OpenCV里面并没有这样的方法,现在我在OpenCV的源码里面发现合并矩阵的方法,分享给大家. A = ...

  6. OpenCV 对矩阵进行掩码操作

    Mask operations on matrices https://docs.opencv.org/master/d7/d37/tutorial_mat_mask_operations.html ...

  7. 图像处理之 opencv 学习---矩阵的操作

    OpenCV的一些操作,如生成随机矩阵,高斯矩阵,矩阵相乘之类的 /*功能:说明矩阵的一些操作方法*/#include "cv.h"//该头文件包含了#include " ...

  8. Opencv Mat矩阵中data、size、depth、elemSize、step等属性的理解

    data: uchar类型的指针,指向Mat数据矩阵的首地址.可以理解为标示一个房屋的门牌号: dims: Mat矩阵的维度,若Mat是一个二维矩阵,则dims=2,三维则dims=3,大多数情况下处 ...

  9. matlab 工具函数 —— normalize(归一化数据)

    function x = normalize(x, mu, sigma) x = bsxfun(@minus, x, mu); x = bsxfun(@rdivide, x, sigma); end ...

随机推荐

  1. C++调用DLL方法

    调用的原理: 调用DLL,首先需要将DLL文件映像到用户进程的地址空间中,然后才能进行函数调用,这个函数和进程内部一般函数的调用方法相同.Windows提供了两种将DLL映像到进程地址空间的方法:隐式 ...

  2. qt creator源码全方面分析(2-6)

    目录 User Interface Text Guidelines 语法和风格 标点 编写工具提示tooltips 编写消息 UI文本大写 使用书本样式大写 使用句子样式大写 准备本地化 标记UI文本 ...

  3. CCF_201512-1_数位之和

    水. #include<iostream> #include<cstdio> using namespace std; int main() { ; cin >> ...

  4. 基于 HTML5 WebGL 的智慧楼宇三维可视化监控

    前言 可视化的智慧楼宇在 21 世纪是有急迫需求的,中国被世界称为"基建狂魔",全球高层建筑数量位居首位,所以对于楼宇的监控是必不可少.智慧楼宇可视化系统更多突出的是管理方面的功能 ...

  5. 基于 H5和 3D WebVR 的可视化虚拟现实培训系统

    前言 2019 年 VR, AR, XR, 5G, 工业互联网等名词频繁出现在我们的视野中,信息的分享与虚实的结合已经成为大势所趋,5G 是新一代信息通信技术升级的重要方向,工业互联网是制造业转型升级 ...

  6. XLNet:运行机制及和Bert的异同比较

    这两天,XLNet貌似也引起了NLP圈的极大关注,从实验数据看,在某些场景下,确实XLNet相对Bert有很大幅度的提升.就像我们之前说的,感觉Bert打开两阶段模式的魔法盒开关后,在这条路上,会有越 ...

  7. python 分析慢查询日志生成报告

    python分析Mysql慢查询.通过Python调用开源分析工具pt-query-digest生成json结果,Python脚本解析json生成html报告. #!/usr/bin/env pyth ...

  8. Django (二) 常用字段及 ORM

    MVC介绍 Django生命周期 many-to-many One-to-many Django常用字段 CharFiled 需要有max_length unique=True(代表不能重名) Ema ...

  9. centos6.5安装openLDAP2.3

    查看系统版本,内核,定时任务同步时间,关闭防火墙selinux等 [root@ldap-master ~]# cat /etc/redhat-release CentOS release 6.5 (F ...

  10. REDTEAM 指南---第四章 外部侦察

    第四章 外部侦察 贡献者:Haythem Arfaoui 翻译BugMan 主动侦察 介绍 主动足迹涉及使用可以帮助您收集更多信息的工具和技术 有关目标的信息.与被动足迹不同的是,过程永远不会“触及” ...