《机器学习实战》第3章决策树程序清单3-1 计算给定数据集的香农熵calcShannonEnt()运行过程
from math import log def calcShannonEnt(dataSet):
numEntries = len(dataSet)
print("样本总数:" + str(numEntries)) labelCounts = {} #记录每一类标签的数量 #定义特征向量featVec
for featVec in dataSet: currentLabel = featVec[-1] #最后一列是类别标签 if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0; labelCounts[currentLabel] += 1 #标签currentLabel出现的次数
print("当前labelCounts状态:" + str(labelCounts)) shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries #每一个类别标签出现的概率 print(str(key) + "类别的概率:" + str(prob))
print(prob * log(prob, 2) )
shannonEnt -= prob * log(prob, 2)
print("熵值:" + str(shannonEnt)) return shannonEnt def createDataSet():
dataSet = [
# [1, 1, 'yes'],
# [1, 0, 'yes'],
# [1, 1, 'no'],
# [0, 1, 'no'],
# [0, 1, 'no'],
# #以下随意添加,用于测试熵的变化,越混乱越冲突,熵越大
# [1, 1, 'no'],
# [1, 1, 'no'],
# [1, 1, 'no'],
# [1, 1, 'no'],
# [1, 1, 'maybe'],
# [1, 1, 'maybe1']
# 用下面的8个比较极端的例子看得会更清楚。如果按照这个规则继续增加下去,熵会继续增大。
# [1,1,'1'],
# [1,1,'2'],
# [1,1,'3'],
# [1,1,'4'],
# [1,1,'5'],
# [1,1,'6'],
# [1,1,'7'],
# [1,1,'8'], # 这是另一个极端的例子,所有样本的类别是一样的,有序,不混乱,此时熵为0
[1,1,''],
[1,1,''],
[1,1,''],
[1,1,''],
[1,1,''],
[1,1,''],
[1,1,''],
[1,1,''],
] labels = ['no surfacing', 'flippers'] return dataSet, labels def testCalcShannonEnt(): myDat, labels = createDataSet()
print(calcShannonEnt(myDat)) if __name__ == '__main__':
testCalcShannonEnt()
print(log(0.000002, 2))
以下输出结果是每个样本的类别都不同时的输出结果:
|
样本总数:8 |
from math import log
def calcShannonEnt(dataSet):numEntries = len(dataSet)print("样本总数:" + str(numEntries))
labelCounts = {} #记录每一类标签的数量
#定义特征向量featVecfor featVec in dataSet:currentLabel = featVec[-1] #最后一列是类别标签
if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0;
labelCounts[currentLabel] += 1 #标签currentLabel出现的次数print("当前labelCounts状态:" + str(labelCounts))
shannonEnt = 0.0
for key in labelCounts:prob = float(labelCounts[key]) / numEntries #每一个类别标签出现的概率
print(str(key) + "类别的概率:" + str(prob))print(prob * log(prob, 2) )shannonEnt -= prob * log(prob, 2) print("熵值:" + str(shannonEnt))
return shannonEnt
def createDataSet():dataSet = [# [1, 1, 'yes'],# [1, 0, 'yes'],# [1, 1, 'no'],# [0, 1, 'no'],# [0, 1, 'no'],# #以下随意添加,用于测试熵的变化,越混乱越冲突,熵越大# [1, 1, 'no'],# [1, 1, 'no'],# [1, 1, 'no'],# [1, 1, 'no'],# [1, 1, 'maybe'],# [1, 1, 'maybe1']# 用下面的8个比较极端的例子看得会更清楚。如果按照这个规则继续增加下去,熵会继续增大。# [1,1,'1'],# [1,1,'2'],# [1,1,'3'],# [1,1,'4'],# [1,1,'5'],# [1,1,'6'],# [1,1,'7'],# [1,1,'8'],
# 这是另一个极端的例子,所有样本的类别是一样的,有序,不混乱,此时熵为0[1,1,'1'],[1,1,'1'],[1,1,'1'],[1,1,'1'],[1,1,'1'],[1,1,'1'],[1,1,'1'],[1,1,'1'],]
labels = ['no surfacing', 'flippers']
return dataSet, labels
def testCalcShannonEnt():
myDat, labels = createDataSet()print(calcShannonEnt(myDat))
if __name__ == '__main__':testCalcShannonEnt()print(log(0.000002, 2))
《机器学习实战》第3章决策树程序清单3-1 计算给定数据集的香农熵calcShannonEnt()运行过程的更多相关文章
- 《机器学习实战之第二章k-近邻算法》
入坑<机器学习实战>: 本书的第一个机器学习算法是k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据 ...
- 《机器学习实战第7章:利用AdaBoost元算法提高分类性能》
import numpy as np import matplotlib.pyplot as plt def loadSimpData(): dataMat = np.matrix([[1., 2.1 ...
- Java程序员必了解的JVM原理以及虚拟机的运行过程
JVM概念 虚拟机:指以软件的方式模拟具有完整硬件,VM概念 虚拟机:指以软件的方式模拟具有完整硬件系统功能.运行在一个完全隔离环境中的完整计算机系统 ,是物理机的软件实现.常用的虚拟机有VMWare ...
- 机器学习实战书-第二章K-近邻算法笔记
本章介绍第一个机器学习算法:A-近邻算法,它非常有效而且易于掌握.首先,我们将探讨女-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用?7««^从文本文件中导人并解析数据: 再次 ...
- 《机器学习实战》---第二章 k近邻算法 kNN
下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...
- 【机器学习实战】第3章 决策树(Decision Tree)
第3章 决策树 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/ ...
- 【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分 ...
- 机器学习实战python3 决策树ID3
代码及数据:https://github.com/zle1992/MachineLearningInAction 决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特 ...
- 决策树ID3算法python实现 -- 《机器学习实战》
from math import log import numpy as np import matplotlib.pyplot as plt import operator #计算给定数据集的香农熵 ...
随机推荐
- Aspose------导出Excel
代码: /// <summary> /// 导出Excel /// </summary> /// <typeparam name="T">泛型类 ...
- 【能力提升】SQL Server常见问题介绍及高速解决建议
前言 本文旨在帮助SQL Server数据库的使用人员了解常见的问题.及高速解决这些问题.这些问题是数据库的常规管理问题,对于非常多对数据库没有深入了解的朋友提供一个大概的常见问题框架. 以下一些问题 ...
- Go之继承的实现
go的继承是使用匿名字段来实现的 package util //----------------Person---------------- type Person struct { Name str ...
- js精准时间迭代器(定时器)
/** * 精准时间迭代器 * Create By Tujia @2017.05.22 * * 使用示例: * window.setMyInterval(function(){ * console.l ...
- spine-unity3D 学习笔记
http://zh.esotericsoftware.com/spine-using-runtimes //skeletonData SkeletonAnimation skeletonAnimati ...
- [SecureCRT] 解决 securecrt failed to open the host key database file 的问题
SecureCRT 在 Windows XP 和 Windows 7 中的个人应用数据路径是不同的,在 Windows 7 中,应用数据路径为:C:\Users\<username>\Ap ...
- mybayis 之resultType="map"
List<Map> publishInfos = memberShareMapper.shareToCouponCountGroupByPublishId(memberShare.getA ...
- [微信小程序]计算自己手机到指定位置的距离
目的: 根据目的地的坐标计算自己手机的位置离目的地的距离的 核心思路: 后续操作必须等所有异步请求都返回了才能继续 使用 const qqmap = require("../../utils ...
- 【python3】基于 qq邮箱的邮件发送
脚本内容: #!/usr/bin/python3 # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText ...
- nginx命令行参数和信号
nginx命令行参数 [user@host dir]$ /usr/local/nginx/sbin/nginx -hnginx version: nginx/1.8.0Usage: nginx [-? ...