转 :scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587
使用GBDT选取特征
2015-03-31
本文介绍如何使用scikit-learn的GBDT工具进行特征选取。
为什麽选取特征
有些特征意义不大,删除后不影响效果,甚至可能提升效果。
关于GBDT(Gradient Boosting Decision Tree)
可以参考:
如何在numpy数组中选取若干列或者行?
>>> import numpy as np
>>> tmp_a = np.array([[1,1], [0.4, 4], [1., 0.9]])
>>> tmp_a
array([[ 1. , 1. ],
[ 0.4, 4. ],
[ 1. , 0.9]])
>>> tmp_a[[0,1],:] # 选第0、1行
array([[ 1. , 1. ],
[ 0.4, 4. ]])
>>> tmp_a[np.array([True, False, True]), :] # 选第0、2行
array([[ 1. , 1. ],
[ 1. , 0.9]])
>>> tmp_a[:,[0]] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
>>> tmp_a[:, np.array([True, False])] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
生成数据集
参考基于贝叶斯的文本分类实战。部分方法在原始数据集的预测效果也在基于贝叶斯的文本分类实战这篇文章里。
训练GBDT
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gbdt = GradientBoostingClassifier()
>>> gbdt.fit(training_data, training_labels) # 训练。喝杯咖啡吧
GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
random_state=None, subsample=1.0, verbose=0,
warm_start=False)
>>> gbdt.feature_importances_ # 据此选取重要的特征
array([ 2.08644807e-06, 0.00000000e+00, 8.93452010e-04, ...,
5.12199658e-04, 0.00000000e+00, 0.00000000e+00])
>>> gbdt.feature_importances_.shape
(19630,)
看一下GBDT的分类效果:
>>> gbdt_predict_labels = gbdt.predict(test_data)
>>> sum(gbdt_predict_labels==test_labels) # 比 多项式贝叶斯 差许多
414
新的训练集和测试集(只保留了1636个特征,原先是19630个特征):
>>> new_train_data = training_data[:, feature_importances>0]
>>> new_train_data.shape # 只保留了1636个特征
(1998, 1636)
>>> new_test_data = test_data[:, feature_importances>0]
>>> new_test_data.shape
(509, 1636)
使用多项式贝叶斯处理新数据
>>> from sklearn.naive_bayes import MultinomialNB
>>> bayes = MultinomialNB()
>>> bayes.fit(new_train_data, training_labels)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是454
445
使用伯努利贝叶斯处理新数据
>>> from sklearn.naive_bayes import BernoulliNB
>>> bayes2 = BernoulliNB()
>>> bayes2.fit(new_train_data, training_labels)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes2.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是387
422
使用Logistic回归处理新数据
对原始特征组成的数据集:
>>> from sklearn.linear_model import LogisticRegression
>>> lr1 = LogisticRegression()
>>> lr1.fit(training_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr1_predict_labels = lr1.predict(test_data)
>>> sum(lr1_predict_labels == test_labels)
446
对削减后的特征组成的数据集:
>>> lr2 = LogisticRegression()
>>> lr2.fit(new_train_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr2_predict_labels = lr2.predict(new_test_data)
>>> sum(lr2_predict_labels == test_labels) # 正确率略微提升
449
(完)
转 :scikit-learn的GBDT工具进行特征选取。的更多相关文章
- scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 特征选取1-from sklearn.feature_selection import SelectKBest
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- [模式识别].(希腊)西奥多里蒂斯<第四版>笔记5之__特征选取
1,引言 有关模式识别的一个主要问题是维数灾难.我们将在第7章看到维数非常easy变得非常大. 减少维数的必要性有几方面的原因.计算复杂度是一个方面.还有一个有关分类器的泛化性能. 因此,本章的主要任 ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
随机推荐
- GDI 泄漏检测方法
方法一 1.打开电脑的[任务管理器],选择[进程]页,点击菜单项的[查看]项,选择[选择列]: 2.勾选[GDI对象(J)]即可. 3.此时,用户就可以在进程中看到每个进程对应的GDI对象,每个进程的 ...
- SGU 200. Cracking RSA (高斯消元求自由变元个数)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: ...
- [Go] defer 语句
Go 还有一些特有的流程控制语句,其中一个就是 defer 语句.该语句用于延迟调用指定的函数,它只能出现在函数的内部,由 defer 关键字以及针对某个函数的调用表达式组成.这里被调用的函数称为 延 ...
- 下载8000首儿歌的python代码
下载8000首儿歌的python的代码: #-*- coding: UTF-8 -*- from pyquery import PyQuery as py from lxml import etree ...
- 8张图理解Java---importnew---programcreek
http://www.importnew.com/11725.html https://www.programcreek.com/2013/09/top-8-diagrams-for-understa ...
- CentOS RabbitMQ 高可用(Mirrored)
原文:https://www.sunjianhua.cn/archives/centos-rabbitmq.html 一.RabbitMQ 单节点 1.1.Windows 版安装配置 1.1.1 安装 ...
- /bin/sh^M: bad interpreter:没有那个文件或目录解决
/bin/sh^M: bad interpreter:没有那个文件或目录解决 执行脚本时发现如下错误: /bin/sh^M: bad interpreter: 没有那个文件或目录 错误分析: ...
- insert 语句后面不要跟 where 等条件语句
insert 语句后面不要跟 where 等条件语句: update 才用得到.
- 【elasticsearch】关于elasticSearch的基础概念了解【转载】
转载原文:https://www.cnblogs.com/chenmc/p/9516100.html 该作者本系列文章,写的很详尽 ================================== ...
- POJ 2135 Farm Tour && HDU 2686 Matrix && HDU 3376 Matrix Again 费用流求来回最短路
累了就要写题解,近期总是被虐到没脾气. 来回最短路问题貌似也能够用DP来搞.只是拿费用流还是非常方便的. 能够转化成求满流为2 的最小花费.一般做法为拆点,对于 i 拆为2*i 和 2*i+1.然后连 ...