转 :scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587
使用GBDT选取特征
2015-03-31
本文介绍如何使用scikit-learn的GBDT工具进行特征选取。
为什麽选取特征
有些特征意义不大,删除后不影响效果,甚至可能提升效果。
关于GBDT(Gradient Boosting Decision Tree)
可以参考:
如何在numpy数组中选取若干列或者行?
>>> import numpy as np
>>> tmp_a = np.array([[1,1], [0.4, 4], [1., 0.9]])
>>> tmp_a
array([[ 1. , 1. ],
[ 0.4, 4. ],
[ 1. , 0.9]])
>>> tmp_a[[0,1],:] # 选第0、1行
array([[ 1. , 1. ],
[ 0.4, 4. ]])
>>> tmp_a[np.array([True, False, True]), :] # 选第0、2行
array([[ 1. , 1. ],
[ 1. , 0.9]])
>>> tmp_a[:,[0]] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
>>> tmp_a[:, np.array([True, False])] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
生成数据集
参考基于贝叶斯的文本分类实战。部分方法在原始数据集的预测效果也在基于贝叶斯的文本分类实战这篇文章里。
训练GBDT
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gbdt = GradientBoostingClassifier()
>>> gbdt.fit(training_data, training_labels) # 训练。喝杯咖啡吧
GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
random_state=None, subsample=1.0, verbose=0,
warm_start=False)
>>> gbdt.feature_importances_ # 据此选取重要的特征
array([ 2.08644807e-06, 0.00000000e+00, 8.93452010e-04, ...,
5.12199658e-04, 0.00000000e+00, 0.00000000e+00])
>>> gbdt.feature_importances_.shape
(19630,)
看一下GBDT的分类效果:
>>> gbdt_predict_labels = gbdt.predict(test_data)
>>> sum(gbdt_predict_labels==test_labels) # 比 多项式贝叶斯 差许多
414
新的训练集和测试集(只保留了1636个特征,原先是19630个特征):
>>> new_train_data = training_data[:, feature_importances>0]
>>> new_train_data.shape # 只保留了1636个特征
(1998, 1636)
>>> new_test_data = test_data[:, feature_importances>0]
>>> new_test_data.shape
(509, 1636)
使用多项式贝叶斯处理新数据
>>> from sklearn.naive_bayes import MultinomialNB
>>> bayes = MultinomialNB()
>>> bayes.fit(new_train_data, training_labels)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是454
445
使用伯努利贝叶斯处理新数据
>>> from sklearn.naive_bayes import BernoulliNB
>>> bayes2 = BernoulliNB()
>>> bayes2.fit(new_train_data, training_labels)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes2.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是387
422
使用Logistic回归处理新数据
对原始特征组成的数据集:
>>> from sklearn.linear_model import LogisticRegression
>>> lr1 = LogisticRegression()
>>> lr1.fit(training_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr1_predict_labels = lr1.predict(test_data)
>>> sum(lr1_predict_labels == test_labels)
446
对削减后的特征组成的数据集:
>>> lr2 = LogisticRegression()
>>> lr2.fit(new_train_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr2_predict_labels = lr2.predict(new_test_data)
>>> sum(lr2_predict_labels == test_labels) # 正确率略微提升
449
(完)
转 :scikit-learn的GBDT工具进行特征选取。的更多相关文章
- scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 特征选取1-from sklearn.feature_selection import SelectKBest
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- [模式识别].(希腊)西奥多里蒂斯<第四版>笔记5之__特征选取
1,引言 有关模式识别的一个主要问题是维数灾难.我们将在第7章看到维数非常easy变得非常大. 减少维数的必要性有几方面的原因.计算复杂度是一个方面.还有一个有关分类器的泛化性能. 因此,本章的主要任 ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
随机推荐
- Xtreme9.0 - Car Spark 动态规划
Car Spark 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/car-spark Descr ...
- BZOJ 4636: 蒟蒻的数列 分块
4636: 蒟蒻的数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4636 Description 蒟蒻DCrusher不仅喜欢玩扑克 ...
- Sublime Text下使用SFTP/FTP插件
一.前言 本文主要记录了Sublime Text编辑器下的SFTP/FTP的安装使用,方便linux和windows下的文件编辑,只是简单的记录,有不足之处,还望指教. 二.Linux和windows ...
- [廖雪峰] Git 分支管理(1):创建与合并分支(HEAD、master、dev、指针)
每次提交,Git 都把它们串成一条时间线,这条时间线就是一个分支.截止到目前,只有一条时间线,在 Git 里,这个分支叫主分支,即 master 分支.HEAD 严格来说不是指向提交,而是指向 mas ...
- TCP套接字端口复用SO_REUSEADDR
下面建立的套接字都是tcp套接字 1.进程创建监听套接字socket1,邦定一个指定端口,并接受了若干连接.那么进程创建另外一个套接口socket2,并试图邦定同一个端口时候,bind错误返回“Add ...
- Revit API遍历系统族布置喷头
系统族可以通过内参遍历,遍历出来是个FamilySymbol喷头属于系统族,但不能通过NewDuct();类似这样的方法布置.必须使用 NewFamilyInstance() ); ...
- Make the DbContext Ambient with UnitOfWorkScope(now named DbContextScope by mehdime)
The Entity Framework DbContext (or LINQ-to-SQL DataContext) is a Unit Of Work implementation. That m ...
- JavaScript进阶系列06,事件委托
在"JavaScript进阶系列05,事件的执行时机, 使用addEventListener为元素同时注册多个事件,事件参数"中已经有了一个跨浏览器的事件处理机制.现在需要使用这个 ...
- C#编程(四十)----------运算符重载
运算符重载 所谓的运算符重载是指允许用户使用用户定义的类型编写表达式的能力. 例如,通常需要编写类似与以下内容的代码,入江两个数字相加,很明显,sum是两个数字之和. int i=5,j=4; int ...
- Swift - 通过叠加UILabel来实现混合的进度条
Swift - 通过叠加UILabel来实现混合的进度条 效果 源码 https://github.com/YouXianMing/Swift-Animations // // MixedColorP ...