https://www.quora.com/How-do-I-implement-a-1D-Convolutional-autoencoder-in-Keras-for-numerical-dataset

    # ENCODER
input_sig = Input(batch_shape=(None,128,1))
x = Conv1D(64,3, activation='relu', padding='valid')(input_sig)
x1 = MaxPooling1D(2)(x)
x2 = Conv1D(32,3, activation='relu', padding='valid')(x1)
x3 = MaxPooling1D(2)(x2)
flat = Flatten()(x3)
encoded = Dense(32,activation = 'relu')(flat) print("shape of encoded {}".format(K.int_shape(encoded))) # DECODER
x2_ = Conv1D(32, 3, activation='relu', padding='valid')(x3)
x1_ = UpSampling1D(2)(x2_)
x_ = Conv1D(64, 3, activation='relu', padding='valid')(x1_)
upsamp = UpSampling1D(2)(x_)
flat = Flatten()(upsamp)
decoded = Dense(128,activation = 'relu')(flat)
decoded = Reshape((128,1))(decoded) print("shape of decoded {}".format(K.int_shape(decoded))) autoencoder = Model(input_sig, decoded)
autoencoder.compile(optimizer='adam', loss='mse', metrics=['accuracy'])

http://qaru.site/questions/418926/keras-autoencoder-error-when-checking-target

from keras.layers import Input, Dense, Conv1D, MaxPooling1D, UpSampling1D
from keras.models import Model
from keras import backend as K
import scipy as scipy
import numpy as np mat = scipy.io.loadmat('edata.mat')
emat = mat['edata'] input_img = Input(shape=(64,1)) # adapt this if using `channels_first` image data format x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x) x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((4))(x)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') x_train = emat[:,0:80000]
x_train = np.reshape(x_train, (x_train.shape[1], 64, 1))
x_test = emat[:,80000:120000]
x_test = np.reshape(x_test, (x_test.shape[1], 64, 1)) from keras.callbacks import TensorBoard autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

貌似上面的有问题,修改后是:

input_img = Input(shape=(64,1))  

x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x) x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((8))(x) ## <-- change here (was 4)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

一些生成模型:https://www.programcreek.com/python/example/93306/keras.layers.convolutional.UpSampling1D

def generator_model():  # CDNN Model
print(INPUT_LN, N_GEN_l, CODE_LN) model = Sequential() model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu')) model.add(UpSampling1D(length=N_GEN_l[0]))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu')) model.add(UpSampling1D(length=N_GEN_l[1]))
model.add(Convolution1D(1, 5, border_mode='same'))
model.add(Activation('tanh'))
return model
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
# Merge noise and auxilary inputs
gen_input = Input(shape=(noise_dim,), name="noise_input")
aux_input = Input(shape=(aux_dim,), name="auxilary_input")
x = concatenate([gen_input, aux_input], axis=-1) # Dense Layer 1
x = Dense(10 * 100)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 10*100 # Reshape the tensors to support CNNs
x = Reshape((100, 10))(x) # shape is 100 x 10 # Conv Layer 1
x = Conv1D(filters=250, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 100 x 250
x = UpSampling1D(size=2)(x) # output shape is 200 x 250 # Conv Layer 2
x = Conv1D(filters=100, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 200 x 100
x = UpSampling1D(size=2)(x) # output shape is 400 x 100 # Conv Layer 3
x = Conv1D(filters=1, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('tanh')(x) # final output shape is 400 x 1 generator_model = Model(
outputs=[x], inputs=[gen_input, aux_input], name=model_name) return generator_model
def generator_model_44():  # CDNN Model
model = Sequential() model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu')) model.add(UpSampling1D(length=4))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu')) model.add(UpSampling1D(length=4))
model.add(Convolution1D(1, 5, border_mode='same'))
# model.add(Activation('relu'))
return model
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
# Merge noise and auxilary inputs
gen_input = Input(shape=(noise_dim,), name="noise_input")
aux_input = Input(shape=(aux_dim,), name="auxilary_input")
x = merge([gen_input, aux_input], mode="concat", concat_axis=-1) # Dense Layer 1
x = Dense(10 * 100)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 10*100 # Reshape the tensors to support CNNs
x = Reshape((100, 10))(x) # shape is 100 x 10 # Conv Layer 1
x = Convolution1D(nb_filter=250,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 100 x 250
x = UpSampling1D(length=2)(x) # output shape is 200 x 250 # Conv Layer 2
x = Convolution1D(nb_filter=100,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 200 x 100
x = UpSampling1D(length=2)(x) # output shape is 400 x 100 # Conv Layer 3
x = Convolution1D(nb_filter=1,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = Activation('tanh')(x) # final output shape is 400 x 1 generator_model = Model(
input=[gen_input, aux_input], output=[x], name=model_name) return generator_model

下面代码有问题,但是结构可以参考(https://groups.google.com/forum/#!topic/keras-users/EXOuZ4YKONY):

import numpy as np

from keras.layers import Input # define the input shape for the model
from keras.layers import Conv1D, MaxPooling1D, UpSampling1D # for the convnet structure
from keras.models import Model # for the overall definition from keras.initializers import Constant # bias initialisation
from keras.initializers import TruncatedNormal # kernel initialissation
from keras.layers.advanced_activations import LeakyReLU # activation function (from NSynth) # define input shape
input_img = Input(shape=(500,128))
print('Some information about tensor expected shapes')
print('Input tensor shape:', input_img.shape) # define encoder convnet
# obs: 1D convolution implemented
x = Conv1D(filters=128,kernel_size=4,activation=LeakyReLU(),padding='causal',dilation_rate=4,bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(input_img)
x = Conv1D(filters=256,kernel_size=(4),activation=LeakyReLU(),padding='causal',dilation_rate=2,bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(x)
x = MaxPooling1D(pool_size=4,strides=4)(x)
encoded = Conv1D(filters=512,kernel_size=4,activation=LeakyReLU(),padding='causal',bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(x)
print('Encoded representation tensor shape:', encoded.shape) # define decoder convnet
x = Conv1D(filters=256,kernel_size=4,activation=LeakyReLU(),padding='causal',bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(encoded)
x = UpSampling1D(size=4)(x)
x = Conv1D(filters=128,kernel_size=4,activation=LeakyReLU(),padding='causal',dilation_rate=2,bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(x)
decoded = Conv1D(filters=1,kernel_size=4,activation=LeakyReLU(),padding='causal',dilation_rate=4,bias_initializer=Constant(0.1),kernel_initializer=TruncatedNormal())(x)
print('Decoded representation tensor shape:', decoded.shape) # define overal autoencoder model
cae = Model(inputs=input_img, outputs=decoded)
cae.compile(optimizer='adam', loss='mse') # check for equal size
# obs: the missing value is the batch_size
if input_img.shape[1:] != decoded.shape[1:]: print('alert: in/out dimension mismatch') And, with no surprise, I get
alert: in/out dimension mismatch

conv1d UpSampling1D aotoencoder 自编码代码摘录的更多相关文章

  1. live Templates 活动模板. 配置完之后,就可以快速编码-代码块

    配置:live Templates 活动模板. 配置完之后,就可以快速编码-代码块. 输入startflask敲回车:   就会生成代码:   怎么做到的呢? 如下:   注意第七步: 原本不是cha ...

  2. wndows程序设计之书籍知识与代码摘录-封装一个类似printf的messagebox

    //----------------------------------------- //本程序展示了如何实现MessageBoxPrintf函数 //本函数能像printf那样格式化输出 //摘录 ...

  3. wndows程序设计之书籍知识与代码摘录-获取视屏显示器像素等参数GetsystemMetrics

    以下的代码段用于获取视屏显示器的高度宽度,以像素为单位. int sxScreen, cyScreen; cxScreen = GetSystemMetrics (SM_CXSCREEN); cySc ...

  4. ISD9160学习笔记04_ISD9160音频编码代码分析

    前言 录音例程涉及了录音和播放两大块内容,上篇笔记说了播放,这篇就来说说录音这块,也就是音频编码这部分功能. 上篇笔记中的这段话太装逼了,我决定再复制下,嘿嘿. “我的锤子便签中有上个月记下的一句话, ...

  5. src或者href值为base64编码代码

    大家可能注意到了,网页上有些图片的src或css背景图片的url后面跟了一大串字符,比如:data:image/png;base64, iVBORw0KGgoAAAANSUhEUgnZVJlYWR5c ...

  6. PYTHON代码摘录

    文件处理 #典型的读取文件代码 row_data = {} with open('PaceData.csv') as paces: column_heading = paces.readline(). ...

  7. PERL代码摘录

    1. 语法与数据结构 #嵌套哈希的赋值和取值 $HashTable{$key} = [@Array] #这个是赋值 @Array = @{ $HashTable{$key} } # 这个是取值 #Pe ...

  8. 优秀代码摘录片段一:LinkedList中定位index时使用折半思想

    在LinkedList有一段小代码,实现的功能是,在链表中间进行插如,所以在插如的过程中会需要找到对应的index位置的node元素: 如果放在平时只为了实现功能而进行遍历查找,很多人会直接使用一个w ...

  9. Javascript代码摘录

    判断浏览器窗口高度 if (document.documentElement.clientHeight <800) { var elm = document.getElementById('Di ...

随机推荐

  1. 03: itchat发送微信消息

    1.1 微信机器人自动回复消息 1.运行程序,会弹出二维码,扫描授权后即可实现自动回复信息 参考01  参考02 #coding=utf8 import itchat, time from itcha ...

  2. USB/232/485/TTL/CMOS(串口通信)⭐⭐⭐

    1.USB:电脑的USB口信号时USB信号,为差分信号,电压范围:+400mV~-400mV间变化:直流电压5V 驱动电流500MA 2.232电平: 逻辑1(MARK)=-3V--15V 逻辑0(S ...

  3. python_实现发送邮件功能

    #!/usr/bin/env python #-*- coding:utf-8 -*- from email import encoders from email.header import Head ...

  4. Python3基础 list str转成list

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  5. 六角填数|2014年蓝桥杯B组题解析第七题-fishers

    六角填数 如图所示六角形中,填入1~12的数字. 使得每条直线上的数字之和都相同. 图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少? 请通过浏览器提交答案,不要填写多余的内容. 思路 ...

  6. 批量启动application pool

    在powershell中执行 Get-ChildItem IIS:\AppPools | where {$_.state -eq "Stopped"} | Start-WebApp ...

  7. 软件设计师真题试题&&答案

    软件设计师2013上半年上午试题及答案详解 下午试题 2013下半年上午答案 试题 下午答案 试题 2014上半年上午答案 2015上半年上午答案 2016上半年上午试题

  8. 如何设置datatable的宽度

    本文为博主原创,未经允许不得转载: datatable插件具有很好的自动适应性,在大多数情况下可以自适应,完美的展示列表内容. 实现其自适应的其特性为:"bAutoWidth": ...

  9. maven插件安装

    eclipse安装maven插件,在网上有各种各样的方法,博主使用过的也不止一种,但是留下的印象总是时好时不好,同样的方法也不确定那一次能够成功.其实失败的大多数原因是因为所安装的maven插件版本与 ...

  10. HDU 5961 传递

    http://acm.hdu.edu.cn/showproblem.php?pid=5961 题意: 思路: 话不多说,直接暴力. #include<iostream> #include& ...