CF480E Parking Lot(two-pointers + 单调队列优化)
题面
动态加障碍物,同时查询最大子正方形。
n,m≤2000n,m\leq2000n,m≤2000
题解
加障碍不好做,直接离线后反着做,每次就是清除一个障碍物。
显然倒着做答案是递增的,而且答案的值域是[0,min(n,m)][0,\min(n,m)][0,min(n,m)],所以我们可以存一下答案,然后每次checkcheckcheck能不能+1+1+1。
考虑把一个位置的障碍物清除后如果答案能变大,这个矩阵一定包含这个位置。那么考虑怎么求是否存在一个边长为lenlenlen的矩形覆盖这个位置。
我们存下l[i][j]l[i][j]l[i][j]和r[i][j]r[i][j]r[i][j],表示(i,j)(i,j)(i,j)位置向左和向右最多能扩展的距离。这个东西是可以维护的,因为每次改一个点只会影响一行mmm个数的值。直接暴力修改。
然后对于(i,j)(i,j)(i,j)位置,如果存在一个边长为lenlenlen的正方形覆盖(i,j)(i,j)(i,j),一定在第jjj列存在连续lenlenlen行满足:
min(l[k][j])+min(r[k][j])−1≥len\min(l[k][j])+\min(r[k][j])-1\geq lenmin(l[k][j])+min(r[k][j])−1≥len
这样我们就可以直接two-pointers,两个单调队列维护lll和rrr的最小值来判断是否存在答案。
我的代码中并没有保证一定经过(i,j)(i,j)(i,j)这个点,但是这样并不会错过答案。
时间复杂度O(nm)O(nm)O(nm)
CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2005;
int n, m, k, l[MAXN][MAXN], r[MAXN][MAXN];
char S[MAXN];
int a[MAXN][MAXN], dp[MAXN][MAXN], x[MAXN], y[MAXN], ans[MAXN];
void clr(int i) {
for(int j = 1; j <= m; ++j) l[i][j] = a[i][j] ? 0 : l[i][j-1] + 1;
for(int j = m; j >= 1; --j) r[i][j] = a[i][j] ? 0 : r[i][j+1] + 1;
}
int solve() {
int re = 0;
for(int i = 1; i <= n; ++i) clr(i);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
if(!a[i][j]) {
dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
re = max(re, dp[i][j]);
}
return re;
}
int v[2][MAXN], q[2][MAXN], s[2], t[2];
inline void del(int p) {
while(s[0] < t[0] && q[0][s[0]] <= p) ++s[0];
while(s[1] < t[1] && q[1][s[1]] <= p) ++s[1];
}
inline void ins(int i) {
while(s[0] < t[0] && v[0][q[0][t[0]-1]] >= v[0][i]) --t[0]; q[0][t[0]++] = i;
while(s[1] < t[1] && v[1][q[1][t[1]-1]] >= v[1][i]) --t[1]; q[1][t[1]++] = i;
}
bool calc(int j, int len) {
for(int i = 1; i <= n; ++i) v[0][i] = l[i][j], v[1][i] = r[i][j];
s[0] = s[1] = t[0] = t[1] = 0;
q[0][0] = q[1][0] = 0;
for(int i = 1, p = 0; i <= n; ++i) {
while(i-p >= len) del(p++); ins(i);
if(i >= len && v[0][q[0][s[0]]] + v[1][q[1][s[1]]] - 1 >= len) return 1;
}
return 0;
}
int main () {
scanf("%d%d%d", &n, &m, &k);
for(int i = 1; i <= n; ++i) {
scanf("%s", S+1);
for(int j = 1; j <= m; ++j)
a[i][j] = S[j] == 'X';
}
for(int i = 1; i <= k; ++i) scanf("%d%d", &x[i], &y[i]), a[x[i]][y[i]] = 1;
ans[k] = solve();
for(int i = k; i > 1; --i) {
a[x[i]][y[i]] = 0;
clr(x[i]);
for(ans[i-1]=ans[i]; calc(y[i], ans[i-1]+1); ++ans[i-1]);
}
for(int i = 1; i <= k; ++i) printf("%d\n", ans[i]);
}
CF480E Parking Lot(two-pointers + 单调队列优化)的更多相关文章
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- UESTC 880 生日礼物 --单调队列优化DP
定义dp[i][j]表示第i天手中有j股股票时,获得的最多钱数. 转移方程有: 1.当天不买也不卖: dp[i][j]=dp[i-1][j]; 2.当天买了j-k股: dp[i][j]=max(dp[ ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- 使用单调队列优化的 O(nm) 多重背包算法
我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接. 解析 多重背包的最原始的状态转移方程: 令 c[i] = min(num[i], j / v[i]) f[i][j] = max(f[i-1][ ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- uvalive4327(单调队列优化)
这题我有闪过是用单调队列优化的想法,也想过有左右两边各烧一遍. 但是不敢确定,搜了题解,发现真的是用单调队列,然后写了好久,调了好久下标应该怎么变化才过的. dp[i][j] 表示走到第i行,第j个竖 ...
随机推荐
- [转帖]Linux文件系统详解
Linux文件系统详解 https://www.cnblogs.com/alantu2018/p/8461749.html 贼复杂.. 从操作系统的角度详解Linux文件系统层次.文件系统分类.文件系 ...
- Quartz.Net—TriggerBuilder
TriggerBuilder TriggerBuilder是一个建造者模式,链式建造.通过静态方法构建一个TriggerBuilder实例,然后再调用类方法Build()创建一个ITrigger的实现 ...
- 《Mysql - Count(*) 的优化》
一:Count(*) 的实现方式? - 要明确的是,在不同的 MySQL 引擎中,count(*) 有不同的实现方式. - MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) ...
- Python09之range函数(BIF内置函数)
具体语法: range(起始值,结束值,步进值) range() 其属于内置函数,不需要导入其他模块即可使用,直接在Python的IDLE直接可以使用. list(range(0,10)) [0, 1 ...
- smarty中常用的流程控制逻辑
if else {if $age > 18} <div>年满十八岁!</div> {else if $age > 16} <div>年满十六岁!< ...
- RHEL 6.5 安装Docker
一,配置远程yum源二,下载依赖包1.安装downloadonly插件使用yum下载rpm包2.下载docker需要的依赖包三,安装docker(离线节点)1. 依次执行docker的安装包2. 启动 ...
- python离线安装外部库(第三方库)
在官网下好外部库,解压后,点击解压后的文件夹,按住shift 右击在命令行中执行 输入 python setup.py install
- Python random模块(以后用到一个再更新一个)
random模块是产生随机数的模块 1.random.random() 这是产生0~1之间一个随机浮点数,但是不会包括1 import random num = 0 while num < 10 ...
- mininet:使用vxlan连接两台虚拟机的网络topo
需改虚拟机的网络适配器,将其改为host-only 尝试ping宿主机ip地址,此时能够ping同与虚拟机相连的虚拟网卡ip地址,无法ping同其他网卡ip地址 在虚拟机和宿主机中创建网络topo 在 ...
- docker安装及基本使用
docker分为docker CE 和docker EE,CE即免费社区版,EE即企业付费版.下面基于centos7安装docker CE,其它linux版本可以参考官方文档https://docs. ...