CF480E Parking Lot(two-pointers + 单调队列优化)
题面
动态加障碍物,同时查询最大子正方形。
n,m≤2000n,m\leq2000n,m≤2000
题解
加障碍不好做,直接离线后反着做,每次就是清除一个障碍物。
显然倒着做答案是递增的,而且答案的值域是[0,min(n,m)][0,\min(n,m)][0,min(n,m)],所以我们可以存一下答案,然后每次checkcheckcheck能不能+1+1+1。
考虑把一个位置的障碍物清除后如果答案能变大,这个矩阵一定包含这个位置。那么考虑怎么求是否存在一个边长为lenlenlen的矩形覆盖这个位置。
我们存下l[i][j]l[i][j]l[i][j]和r[i][j]r[i][j]r[i][j],表示(i,j)(i,j)(i,j)位置向左和向右最多能扩展的距离。这个东西是可以维护的,因为每次改一个点只会影响一行mmm个数的值。直接暴力修改。
然后对于(i,j)(i,j)(i,j)位置,如果存在一个边长为lenlenlen的正方形覆盖(i,j)(i,j)(i,j),一定在第jjj列存在连续lenlenlen行满足:
min(l[k][j])+min(r[k][j])−1≥len\min(l[k][j])+\min(r[k][j])-1\geq lenmin(l[k][j])+min(r[k][j])−1≥len
这样我们就可以直接two-pointers,两个单调队列维护lll和rrr的最小值来判断是否存在答案。
我的代码中并没有保证一定经过(i,j)(i,j)(i,j)这个点,但是这样并不会错过答案。
时间复杂度O(nm)O(nm)O(nm)
CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2005;
int n, m, k, l[MAXN][MAXN], r[MAXN][MAXN];
char S[MAXN];
int a[MAXN][MAXN], dp[MAXN][MAXN], x[MAXN], y[MAXN], ans[MAXN];
void clr(int i) {
for(int j = 1; j <= m; ++j) l[i][j] = a[i][j] ? 0 : l[i][j-1] + 1;
for(int j = m; j >= 1; --j) r[i][j] = a[i][j] ? 0 : r[i][j+1] + 1;
}
int solve() {
int re = 0;
for(int i = 1; i <= n; ++i) clr(i);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
if(!a[i][j]) {
dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
re = max(re, dp[i][j]);
}
return re;
}
int v[2][MAXN], q[2][MAXN], s[2], t[2];
inline void del(int p) {
while(s[0] < t[0] && q[0][s[0]] <= p) ++s[0];
while(s[1] < t[1] && q[1][s[1]] <= p) ++s[1];
}
inline void ins(int i) {
while(s[0] < t[0] && v[0][q[0][t[0]-1]] >= v[0][i]) --t[0]; q[0][t[0]++] = i;
while(s[1] < t[1] && v[1][q[1][t[1]-1]] >= v[1][i]) --t[1]; q[1][t[1]++] = i;
}
bool calc(int j, int len) {
for(int i = 1; i <= n; ++i) v[0][i] = l[i][j], v[1][i] = r[i][j];
s[0] = s[1] = t[0] = t[1] = 0;
q[0][0] = q[1][0] = 0;
for(int i = 1, p = 0; i <= n; ++i) {
while(i-p >= len) del(p++); ins(i);
if(i >= len && v[0][q[0][s[0]]] + v[1][q[1][s[1]]] - 1 >= len) return 1;
}
return 0;
}
int main () {
scanf("%d%d%d", &n, &m, &k);
for(int i = 1; i <= n; ++i) {
scanf("%s", S+1);
for(int j = 1; j <= m; ++j)
a[i][j] = S[j] == 'X';
}
for(int i = 1; i <= k; ++i) scanf("%d%d", &x[i], &y[i]), a[x[i]][y[i]] = 1;
ans[k] = solve();
for(int i = k; i > 1; --i) {
a[x[i]][y[i]] = 0;
clr(x[i]);
for(ans[i-1]=ans[i]; calc(y[i], ans[i-1]+1); ++ans[i-1]);
}
for(int i = 1; i <= k; ++i) printf("%d\n", ans[i]);
}
CF480E Parking Lot(two-pointers + 单调队列优化)的更多相关文章
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- UESTC 880 生日礼物 --单调队列优化DP
定义dp[i][j]表示第i天手中有j股股票时,获得的最多钱数. 转移方程有: 1.当天不买也不卖: dp[i][j]=dp[i-1][j]; 2.当天买了j-k股: dp[i][j]=max(dp[ ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- 使用单调队列优化的 O(nm) 多重背包算法
我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接. 解析 多重背包的最原始的状态转移方程: 令 c[i] = min(num[i], j / v[i]) f[i][j] = max(f[i-1][ ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- uvalive4327(单调队列优化)
这题我有闪过是用单调队列优化的想法,也想过有左右两边各烧一遍. 但是不敢确定,搜了题解,发现真的是用单调队列,然后写了好久,调了好久下标应该怎么变化才过的. dp[i][j] 表示走到第i行,第j个竖 ...
随机推荐
- MySQL(一)面试集合
1. 什么是索引? 索引是一种数据结构(存储数据),可以帮助我们快速的进行数据的查找. 索引是帮助高效获取数据的数据结构,索引是一个文件 1)索引有哪些类型: hash 二叉树 ...
- 030 Android 第三方开源下拉框:NiceSpinner的使用+自定义Button样式+shape绘制控件背景图+图片选择器(selector)
1.NiceSpinner下拉框控件介绍 Android原生的下拉框Spinner基本上可以满足Android开发对于下拉选项的设计需求,但现在越来越流行的下拉框不满足于Android原生提供的下拉框 ...
- 快速搭建ssh项目
环境:oracle11g.myeclipse2014 首先在web项目中添加spring框架 现在已经添加完spring框架了 然后我们开始添加Hibernate框架 到这一步Hibernate框架就 ...
- Django出错Xadmin后台报list index out of range
input_html = [ht for ht in super(AdminSplitDateTime, self).render(name, value, attrs).split('/>&l ...
- PAT(B) 1034 有理数四则运算(Java)
题目链接:1034 有理数四则运算 (20 point(s)) 题目描述 本题要求编写程序,计算 2 个有理数的和.差.积.商. 输入格式 输入在一行中按照 a1/b1 a2/b2 的格式给出两个分数 ...
- 机器学习之Adaboost与XGBoost笔记
提升的概念 提升是一个机器学习技术,可以用于回归和分类问题,它每一步产生一个弱预测模型(如决策树),并加权累加到总模型中:如果每一步的弱预测模型生成都是依据损失函数的梯度方向,则称之为梯度提升(Gra ...
- Git Gui、Ssh key的使用和ideaui配置使用Git解决冲突(下)
目的: 1.Git Gui的使用 2.Ssh key 介绍及使用 2.1小结:https 和 SSH 的区别 3.Idea配置使用并使用git 4.ideaui使用Git冲突问题解决 Git Gui的 ...
- 使用babel es6 转 es5
安装 //Webpack 接入 Babel 必须依赖的模块 npm i -D babel-core babel-loader //preset,告诉babel编译的文件中用到了哪些语法env包含当前所 ...
- redis哈希表数据类型键的查询和删除命令
一.查询 命令名称:hget 语法:hget key field 功能:返回哈希表key中给定域field的值 返回值: 给定域的值. 当给定域不存在或是给定key不存在时,返回nil 命令名称:hg ...
- Consul 注册中心介绍
在 Spring Cloud 体系中,几乎每个角色都会有两个以上的产品提供选择,比如在注册中心有:Eureka.Consul.zookeeper.etcd 等:网关的产品有 Zuul.Spring C ...