题目链接:https://www.jisuanke.com/contest/3004?view=challenges

题目大意:

1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的。每次添边的权值要最小。

2.不能构成negative-weighted loop,negative-weighted loop指的是循环加权和为负,即从一个顶点出发在回到这个顶点的经过路径的权值和必须是 >= 0的。所以让你在u,v顶点天一条边,可以计算v - > u的最短路,然后加个负号取反。然后再加边执行下一次询问。需要进行6次SPFA。

3.dijsktra不能处理负边权,这里的边是带负的,所以用spfa,并且注意边权范围是 -1e9~1e9,所以两点之间最短路可能会超int范围,所以dis数组要开long long型。

代码如下:

 #include<stdio.h>
#include<string.h>
#include<queue>
#define mem(a, b) memset(a, b, sizeof(a))
#define LL long long
const int inf = 0x3f3f3f3f;
using namespace std; int n, m;
int head[], cnt, vis[];
LL dis[]; struct Edge
{
int to, next;
LL w;
}edge[]; void add(int a, int b, LL c)
{
edge[++ cnt].to = b;
edge[cnt].w = c;
edge[cnt].next = head[a];
head[a] = cnt;
} void spfa(int st, int ed)
{
mem(vis, ), mem(dis, inf);
queue<int> Q;
Q.push(st);
dis[st] = ;
vis[st] = ;
while(!Q.empty())
{
int a = Q.front();
Q.pop();
vis[a] = ;
for(int i = head[a]; i != -; i = edge[i].next)
{
int to = edge[i].to;
if(dis[to] > dis[a] + edge[i].w)
{
dis[to] = dis[a] + edge[i].w;
if(!vis[to])
{
vis[to] = ;
Q.push(to);
}
}
}
}
} int main()
{
int T;
scanf("%d", &T);
while(T --)
{
scanf("%d%d", &n, &m);
cnt = , mem(head, -);
for(int i = ; i <= m; i ++)
{
int a, b;
LL c;
scanf("%d%d%lld", &a, &b, &c);
add(a, b, c);
}
for(int i = ; i <= ; i ++)
{
int st, ed;
scanf("%d%d", &st, &ed);
spfa(ed, st);
printf("%lld\n", -dis[st]);
add(st, ed, -dis[st]);
}
}
return ;
}

Holy Grail【spfa求最短路】的更多相关文章

  1. 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)

    acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...

  2. ACM - 最短路 - AcWing 851 spfa求最短路

    AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...

  3. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  4. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  5. 851. spfa求最短路(spfa算法模板)

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  6. 851. spfa求最短路

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  7. poj2387 spfa求最短路

    //Accepted 4688 KB 63 ms #include <cstdio> #include <cstring> #include <iostream> ...

  8. poj3268 Silver Cow Party (SPFA求最短路)

    其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...

  9. acwing 851. spfa求最短路 模板

    地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

随机推荐

  1. day42_Oracle学习笔记_01

    一.Oracle Database 的基本概念 1.1.一个Oracle服务器 详解如下: 一个Oracle服务器是一个关系型数据管理系统(RDBMS),它提供开放的,全面的,近乎完整的信息管理.   ...

  2. Java面向对象6(AA ~ AE)

    AE  简单的复数运算(类和对象) (SDUT 4303) import java.util.*; class Complex { int a, b; Complex() { } Complex(in ...

  3. final关键字的理解

    final :最终作为一个修饰符 1.可以修饰类,函数,变量: 2.被final修饰的类不可以被继承: 3.被final修饰的方法不可以被复写: 4.被final修饰的变量是一个常量,只能赋值一次,既 ...

  4. gitlab配置邮箱postfix(新用户激活邮件)

    亲测可用 https://www.cnblogs.com/yoyoketang/p/10287345.html

  5. JAVA基础知识|内部类

    一.什么是内部类? 内部类(inner class)是定义在另一个类中的类 为什么使用内部类? 1)内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据 2)内部类可以对同一个包中的其他类隐藏 ...

  6. 【spring源码分析】IOC容器初始化——查漏补缺(四)

    前言:在前几篇查漏补缺中,其实我们已经涉及到bean生命周期了,本篇内容进行详细分析. 首先看bean实例化过程: 分析: bean实例化开始后 注入对象属性后(前面IOC初始化十几篇文章). 检查激 ...

  7. brew 切换国内的源

    切换到国内源 # 替换brew.git: cd "$(brew --repo)" # 中国科大: git remote set-url origin https://mirrors ...

  8. 如何捕捉Desried Capabilities中的appPackafe和appActive

    捕捉这两个参数需要借助adb工具的日志进行分析.ADB是一种命令行工具,用于PC和Android模拟器之前连接通信,集成在Android ADK中,默认在platfrom-tools目录下.在cmd运 ...

  9. UML期末复习题

    看了网上的各种UML图的相关资料,找到的都是差不多一样的对图的基本介绍.之前复习的时候也想对不同UML图单独进行复习总结,后来发现这样复习好像没什么用,不能理解每个图之间的关系,所以就没有进一步总结. ...

  10. Eclipse的视窗

    PackageExplorer 显示项目结构,包,类,及资源 Outline 显示类的结构,方便查找,识别,修改 Console 程序运行的结果在该窗口显示 Hierarchy 显示Java继承层次结 ...