大意: 给定$n,a$, 求$n$个$3$的倍数, $or$和为$a$的方案数.

简单容斥题

可以求出$f_{x,y}$表示所有$3$的倍数中, 奇数位不超过$x$个$1$, 偶数位不超过$y$个$1$的个数.

假设$a$二进制奇数位$c_1$个$1$,偶数位$c_0$个$1$, 根据容斥就有

$ans=\sum\limits_{i=0}^{c_1}\sum\limits_{j=0}^{c_0}(-1)^{c_0+c_1-i-j}\binom{c_1}{i}\binom{c_0}{j}f_{i,j}^n$

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 63;
int C[N][N],f[N][N];
int main() {
REP(i,0,N-1) {
C[i][0] = 1;
REP(j,1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%P;
}
REP(i,0,N-1) REP(j,0,N-1) REP(ii,0,i) REP(jj,0,j) if ((ii+2*jj)%3==0) {
f[i][j] = (f[i][j]+(ll)C[i][ii]*C[j][jj])%P;
}
int t;
scanf("%d", &t);
while (t--) {
ll n, a;
scanf("%lld%lld", &n, &a);
n %= P-1;
int c[2]{};
REP(i,0,N-1) if (a>>i&1) ++c[i&1];
int ans = 0;
REP(i,0,c[0]) REP(j,0,c[1]) {
int ret = (ll)C[c[0]][i]*C[c[1]][j]%P*qpow(f[i][j],n)%P;
if (c[0]+c[1]+i+j&1) ret = P-ret;
ans = (ans+ret)%P;
}
printf("%d\n", ans);
}
}

2019牛客多校四 E. triples II (容斥)的更多相关文章

  1. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  2. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  3. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  4. 2019牛客多校 Round4

    Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...

  5. 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数

    目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...

  6. 2019牛客多校第四场 A meeting

    链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...

  7. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  8. 2019牛客多校训练第四场K.number(思维)

    题目传送门 题意: 输入一个只包含数字的字符串,求出是300的倍数的子串的个数(不同位置的0.00.000等都算,并考虑前导零的情况). sample input: 600 1230003210132 ...

  9. 2019牛客多校第四场B xor——线段树&&线性基的交

    题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...

随机推荐

  1. java把一段时间分成周,月,季度,年的时间段

    package com.mq.test.activeMQ; import java.text.DateFormat; import java.text.ParseException; import j ...

  2. chrome中的base64和nodejs中的base64

    谷歌浏览器的base64 window["atob"](_0x1c0cdf) nodejs对应的是 Buffer.from(_0x1c0cdf,"base64" ...

  3. [RK3399] 修改移动网络默认为4G

    CPU:RK3399 系统:Android 7.1 现在手机卡都默认是 4G 网路,但是源码中默认的还是 3G网络,每次都要手动改到 4G. 下面在源码中就直接将默认网络改为4G. PREFERRED ...

  4. nodejs取参四种方法 req.body, req.params, req.param, req.body

    获取请求很中的参数是每个web后台处理的必经之路,nodejs的 express框架 提供了四种方法来实现. req.body req.query req.params req.param() 首先介 ...

  5. 最新解决Chrome(版本76.0.3809.100) “请停用以开发者模式运行的扩展程序”的方法

    最新解决Chrome(版本76.0.3809.100) “请停用以开发者模式运行的扩展程序”的方法 最近在远景论坛上发现了最新的解决Chrome浏览器提示:请停用以开发者模式运行的扩展程序的问题.该方 ...

  6. 论文翻译 DOTA:A Large-scale Dataset for Object Detection in Aerial Images

      简介:武大遥感国重实验室-夏桂松和华科电信学院-白翔等合作做的一个航拍图像数据集 摘要: 目标检测是计算机视觉领域一个重要且有挑战性的问题.虽然过去的十几年中目标检测在自然场景已经有了较重要的成就 ...

  7. Maven 打war包

    使用maven将项目达成war包 右击项目的跟项目,选择run as 选择maven  build.... 进入窗口,在 Goals  输入命令   clean package,选择 skip Tes ...

  8. 单层反查BOM

    *&---------------------------------------------------------------------* *& Report YCX_001 * ...

  9. Intellij-编码设置

    目录 文件编码修改 @(目录) 文件编码修改 • 上图标注 1 所示,IDE 的编码默认是 UTF-8 , Project Encoding 虽然默认是 GBK ,但是一般都建议 修改为 UTF-8 ...

  10. LeetCode_169. Majority Element

    169. Majority Element Easy Given an array of size n, find the majority element. The majority element ...