MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP.
Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a method for estimating some variable in the setting of probability distributions or graphical models. They are similar, as they compute a single estimate, instead of a full distribution.
MLE, as we, who have already indulge ourselves in Machine Learning, would be familiar with this method. Sometimes, we even use it without knowing it. Take for example, when fitting a Gaussian to our dataset, we immediately take the sample mean and sample variance, and use it as the parameter of our Gaussian. This is MLE, as, if we take the derivative of the Gaussian function with respect to the mean and variance, and maximizing it (i.e. setting the derivative to zero), what we get is functions that are calculating sample mean and sample variance. Another example, most of the optimization in Machine Learning and Deep Learning (neural net, etc), could be interpreted as MLE.
Speaking in more abstract term, let’s say we have a likelihood function P(X|θ)P(X|θ). Then, the MLE for θ , the parameter we want to infer, is:
As taking a product of some numbers less than 1 would approaching 0 as the number of those numbers goes to infinity, it would be not practical to compute, because of computation underflow. Hence, we will instead work in the log space, as logarithm is monotonically increasing, so maximizing a function is equal to maximizing the log of that function.
To use this framework, we just need to derive the log likelihood of our model, then maximizing it with regard of θ using our favorite optimization algorithm like Gradient Descent.
Up to this point, we now understand what does MLE do. From here, we could draw a parallel line with MAP estimation.
MAP usually comes up in Bayesian setting. Because, as the name suggests, it works on a posterior distribution, not only the likelihood.
Recall, with Bayes’ rule, we could get the posterior as a product of likelihood and prior:
We are ignoring the normalizing constant as we are strictly speaking about optimization here, so proportionality is sufficient.
If we replace the likelihood in the MLE formula above with the posterior, we get:
Comparing both MLE and MAP equation, the only thing differs is the inclusion of prior P(θ) in MAP, otherwise they are identical. What it means is that, the likelihood is now weighted with some weight coming from the prior.
Let’s consider what if we use the simplest prior in our MAP estimation, i.e. uniform prior. This means, we assign equal weights everywhere, on all possible values of the θ. The implication is that the likelihood equivalently weighted by some constants. Being constant, we could be ignored from our MAP equation, as it will not contribute to the maximization.
Let’s be more concrete, let’s say we could assign six possible values into θ . Now, our prior P(θ) is 1/6 everywhere in the distribution. And consequently, we could ignore that constant in our MAP estimation.
We are back at MLE equation again!
If we use different prior, say, a Gaussian, then our prior is not constant anymore, as depending on the region of the distribution, the probability is high or low, never always the same.
What we could conclude then, is that MLE is a special case of MAP, where the prior is uniform!
MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation的更多相关文章
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定 ...
- 机器学习的MLE和MAP:最大似然估计和最大后验估计
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- [Bayes] Maximum Likelihood estimates for text classification
Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...
- 最大似然估计(Maximum Likelihood,ML)
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...
- MLE、MAP、贝叶斯三种估计框架
三个不同的估计框架. MLE最大似然估计:根据训练数据,选取最优模型,预测.观测值D,training data:先验为P(θ). MAP最大后验估计:后验概率. Bayesian贝叶斯估计:综合模型 ...
- Maximum Likelihood Method最大似然法
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广.这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名. 最大似然法是要解决这样一个问题:给定一组数据和一 ...
随机推荐
- Google 搜索语法
1. 逻辑与/或:AND/OR注意 AND.OR 必须大写OR 指令优先于 AND 指令AND 指令一般以space或+代替OR 指令可用 | 代替2. 逻辑非:-3. 完整匹配:" &qu ...
- 打开svn时出现 R6034
An application has made an attempt to load the C runtime library...... 最后发现是因为环境变量path里面有:E:\anacond ...
- 使用sequelize-auto生成sequelize的Models
一.全局安装sequelize-auto npm install -g sequelize-auto 二.全局安装对应数据库的驱动,此处使用的是mysql npm install -g mysql 三 ...
- SpringCloud学习(六)分布式配置中心(Spring Cloud Config)(Finchley版本)
在上一篇文章讲述zuul的时候,已经提到过,使用配置服务来保存各个服务的配置文件.它就是Spring Cloud Config. 简介 在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一管理, ...
- windows ping命令
ping -a 192.168.xxx.xxx 解析计算机NetBios名 ping -n 数字 192.168.xxx.xxx 发送指定数量的echo数据包数,默认是四个 ping -l 192 ...
- kafka安装使用配置1.2
进入cd /usr/local/flume/conf/ vi kafka.conf 配置 agent.sources=s1 agent.channels=c1 agent.sinks=k1 agent ...
- linux常用终端命令(三)远程管理命令
三.远程管理常用命令 关机/重启 shutdown 查看或配置网卡信息 ifconfig ping 远程登录和复制文件 ssh scp 1.关机/重启 序号 命令 对应英文 作用 01 shutdow ...
- 百度音乐接口api
百度音乐接口 百度音乐全接口 http://tingapi.ting.baidu.com/v1/restserver/ting 请求方式:GET 参数处理:format=json&calb ...
- CSS基础布局
目录 css基础布局 1.布局相关的标签 2.盒子模型 2-1 什么是盒子模型 2-2 块级元素和内联元素(行内元素) 2-3 盒子模型之间的关系 盒子模型相关CSS属性 3.浮动 3-1 什么是浮动 ...
- Codeforces 1236C. Labs
传送门 注意到 $f(X,Y)+f(Y,X)$ 是一个定值(因为每个元素都不相同) 所以如果能让 $f(X,Y)$ 与 $f(Y,X)$ 尽可能接近,那么一定是最优的 所以可以这样构造:把 $n^2$ ...