MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP.
Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a method for estimating some variable in the setting of probability distributions or graphical models. They are similar, as they compute a single estimate, instead of a full distribution.
MLE, as we, who have already indulge ourselves in Machine Learning, would be familiar with this method. Sometimes, we even use it without knowing it. Take for example, when fitting a Gaussian to our dataset, we immediately take the sample mean and sample variance, and use it as the parameter of our Gaussian. This is MLE, as, if we take the derivative of the Gaussian function with respect to the mean and variance, and maximizing it (i.e. setting the derivative to zero), what we get is functions that are calculating sample mean and sample variance. Another example, most of the optimization in Machine Learning and Deep Learning (neural net, etc), could be interpreted as MLE.
Speaking in more abstract term, let’s say we have a likelihood function P(X|θ)P(X|θ). Then, the MLE for θ , the parameter we want to infer, is:
As taking a product of some numbers less than 1 would approaching 0 as the number of those numbers goes to infinity, it would be not practical to compute, because of computation underflow. Hence, we will instead work in the log space, as logarithm is monotonically increasing, so maximizing a function is equal to maximizing the log of that function.
To use this framework, we just need to derive the log likelihood of our model, then maximizing it with regard of θ using our favorite optimization algorithm like Gradient Descent.
Up to this point, we now understand what does MLE do. From here, we could draw a parallel line with MAP estimation.
MAP usually comes up in Bayesian setting. Because, as the name suggests, it works on a posterior distribution, not only the likelihood.
Recall, with Bayes’ rule, we could get the posterior as a product of likelihood and prior:
We are ignoring the normalizing constant as we are strictly speaking about optimization here, so proportionality is sufficient.
If we replace the likelihood in the MLE formula above with the posterior, we get:
Comparing both MLE and MAP equation, the only thing differs is the inclusion of prior P(θ) in MAP, otherwise they are identical. What it means is that, the likelihood is now weighted with some weight coming from the prior.
Let’s consider what if we use the simplest prior in our MAP estimation, i.e. uniform prior. This means, we assign equal weights everywhere, on all possible values of the θ. The implication is that the likelihood equivalently weighted by some constants. Being constant, we could be ignored from our MAP equation, as it will not contribute to the maximization.
Let’s be more concrete, let’s say we could assign six possible values into θ . Now, our prior P(θ) is 1/6 everywhere in the distribution. And consequently, we could ignore that constant in our MAP estimation.
We are back at MLE equation again!
If we use different prior, say, a Gaussian, then our prior is not constant anymore, as depending on the region of the distribution, the probability is high or low, never always the same.
What we could conclude then, is that MLE is a special case of MAP, where the prior is uniform!
MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation的更多相关文章
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定 ...
- 机器学习的MLE和MAP:最大似然估计和最大后验估计
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- [Bayes] Maximum Likelihood estimates for text classification
Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...
- 最大似然估计(Maximum Likelihood,ML)
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...
- MLE、MAP、贝叶斯三种估计框架
三个不同的估计框架. MLE最大似然估计:根据训练数据,选取最优模型,预测.观测值D,training data:先验为P(θ). MAP最大后验估计:后验概率. Bayesian贝叶斯估计:综合模型 ...
- Maximum Likelihood Method最大似然法
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广.这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名. 最大似然法是要解决这样一个问题:给定一组数据和一 ...
随机推荐
- ASP.NET Core 入门笔记6,ASP.NET Core MVC 视图传值入门
摘抄自:https://www.cnblogs.com/ken-io/p/aspnet-core-tutorial-mvc-view-renderdata.html 如有侵权请告知 一.前言 1.本教 ...
- 【miscellaneous】海康相机RTSP连接代码分析
海康相机RTSP连接代码分析 最近在做海康相机rtsp连接获取音视频的工作,现在介绍一下分析过程和源码. [源码在我上传的共享资料中: http://download.csdn.net/detail/ ...
- PHP学习(9)——错误和异常处理
1.Exception类 这个类是PHP为异常处理提供的内置类.构造函数的两个参数分别是错误消息和错误代码. 除了构造函数之外,该类还提供了如下的内置方法: · getCode() 返回传递给构造函数 ...
- maven运行工程
1.cd到工程目录下,执行打包命令-----mvn package 2.cd到工程的target目录执行运行命令 java -classpath myapp-1.0-SNAPSHOT.jar cn.m ...
- Nginx进程信号管理
CHLD信号:work进程异常退出会给Master进程发送CHLD信号,这时Master进程就知道Worker进程退出了,然后重新起一个Worker进程: TERM信号:退出进程,不优雅: QUIT信 ...
- Angular5 自定义scrollbar样式之 ngx-perfect-scollbar
版本 angular 5.0 ngx-perfect-scrollbar ^5.3.5 为什么不用 ngx-perfect-scrollbar 最新的版本 v7 呢? 因为它报错啊!!! 每次init ...
- Angular里使用(image-compressor.js)图片压缩
参考资料: http://www.imooc.com/article/40038 https://github.com/xkeshi/image-compressor 示例代码: <nz-upl ...
- 博客C语言I作业11
一.本周教学内容&目标 第5章 函数 要求学生掌握各种类型函数的定义.调用和申明,熟悉变量的作用域.生存周期和存储类型. 二.本周作业头 这个作业属于哪个课程 c语言程序设计II 这个作业要求 ...
- 使用nfsstat命令查看NFS服务器状态
转载于:http://www.cnblogs.com/jankie/archive/2011/09/03/2165851.html nfsstat命令显示关于NFS和到内核的远程过程调用(RPC)接口 ...
- 修改anocanda的channel
http://blog.csdn.net/mtj66/article/details/57074986