题解 [CF961G] Partitions
解析
首先我们观察这个定义,
可以发现每个元素在统计答案时是平等的,
也就是单个元素的权值对答案没有特别的影响.
设元素权值为\(w[i]\),
那么我们就可以知道答案是\(\sum_{i=1}^nw[i]\)乘上一个系数.
而我们再次观察问题中的一个式子\(\left\vert s \right\vert*\sum\limits_iw[i]\),
实际上也就是把\(\sum\limits_iw[i]\)加了\(\left\vert s \right\vert\)次.
所以我们可以把它看成是集合中的每个元素都对答案造成了\(\sum\limits_iw[i]\)的贡献.
而贡献有两种情况:
元素自己给自己贡献
这显然是总情况数\(S(n,k)\),\(S\)为第二类斯特林数.
元素\(j\)给\(i\)贡献(\(j!=i\))
这里的情况数是\((n-1)*S(n-1,k)\).
我们可以理解为先把除了\(i\)的元素分好,再把\(i\)加到其中一个里面.
因为有还\(n-1\)个元素所以要乘\((n-1)\).
最后,答案就是\((S(n,k)+(n-1)*S(n-1,k))*\sum_{i=1}^nw[i]\).
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
#define int ll
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
const int N=200001;
const int Mod=1000000007;
int n,m,sum,f,jc[N];
inline int fp(int a,int b){
int ret=1;
while(b){
if(b&1) ret=(ll)ret*a%Mod;
a=(ll)a*a%Mod;b>>=1;
}
return ret;
}
inline int inv(int x){
return fp(x,Mod-2);
}
inline int stir(int n,int k){
int ret=0;
for(int j=0;j<k;j++) ret=(ret+fp(k-j,n)*inv(jc[j])%Mod*inv(jc[k-j])*((j&1)? -1:1))%Mod;
return ret;
}
signed main(){
n=read();m=read();jc[0]=1;
for(int i=1;i<=n;i++) sum=(sum+read())%Mod;
for(int i=1;i<=m;i++) jc[i]=jc[i-1]*i%Mod;
int ans=sum*(stir(n,m)+stir(n-1,m)*(n-1)%Mod)%Mod;
printf("%lld\n",(ans+Mod)%Mod);
return 0;
}
题解 [CF961G] Partitions的更多相关文章
- 题解 CF961G 【Partitions】
题目传送门 题目大意 给出\(n,k\),以及\(w_{1,2,..,n}\),定义一个集合\(S\)的权值\(W(S)=|S|\sum_{x\in S} w_x\),定义一个划分\(R\)的权值为\ ...
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- CF961G Partitions
传送门 luogu 显然每个数的贡献可以一起算感性理解一下,于是答案就是权值总和乘以每个数被算了几次 那个"集合大小为\(|S|\)的集合权值为权值和乘\(|S|\)",可以看成一 ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- 【题解】Codeforces 961G Partitions
[题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
随机推荐
- 将一个整数数组先按照因子数量排序,再按照数字大小排序,输出第k个数
同小米OJ比赛题:现在有 n 个数,需要用因子个数的多少进行排序,因子个数多的排在后面,因子个数少的排在前面,如果因子个数相同那么就比较这个数的大小,数大的放在后面,数小的放在前面.现在让你说出排序之 ...
- AndroidStudio布局编辑器强制刷新布局界面
用AndroidStudio布局编辑器编辑界面的时候,在selector里调整按钮的颜色,调整后的颜色经常无法实时显示在布局编辑器里,每次都重新运行程序查看界面又非常麻烦和低效,可以用以下方法解决: ...
- TypeScript的变量声明
1.全新的变量声明方式 let和const是JavaScript ES6中新添加的变量声明方式.let在很多方面与var是相似的,但是它可以避免一些在JavaScript里常见一些问题. 而const ...
- Redis 和 Memcached 各有什么优缺点,主要的应用场景是什么样的?
1.显示最新的项目列表 2.删除与过滤 3.排行榜相关 4.按照用户投票和时间排序 5.处理过期项目 6.计数 7.特定时间内的特定项目 8.实时分析正在发生的情况,用于数据统计与防止垃圾邮件等 9. ...
- cmake 升级
cmake 升级 1下载 cmake-3.1.0.tar.gz2.解压 3.执行 ./configure 4.执行 make 5. 执行 sudo make install 6.添加环境变量 ...
- 手机网站支付如何接入支付宝简易版支付功能PHP版
接入支付宝准备工作:(关于账号可以是个体商户也可以是企业账号但必须有营业执照) 1.登录蚂蚁金服开放平台 2.创建应用,应用分类网页应用和移动应用.应用提交审核审核通过后得到Appid才能调用相应的 ...
- extra bytes at beginning or within zipfile
主要用文本文档打开看看是否带有#!/bin/bash 修改pom文件<executable>false</executable>
- Java门面模式(思维导图)
图1 门面模式[点击查看图片] 1,实体对象类 package com.cnblogs.mufasa.demo1; //3个子系统,解决问题的实体 public class StoreA { //示意 ...
- django+mysql(1)
报错误:mysqlclient 1.3.13 or newer is required; you have 0.9.3 第一种: django降到2.1.4版本就OK了 第二种(仍使用django 2 ...
- git diff 的简单使用(比较版本区别)
假如我们修改viewMail.vue 文件(部分代码) 从 //根据ID获取详情 getById () { let that = this; this.viewMailModal = true; th ...