Problem B
Tree of Almost Clean Money

Input File: B.in
Output File: standard output
Time Limit: 4 seconds (C/C++)
Memory Limit: 256 megabytes

The tree of Almost Clean Money (or ACM Tree, for short) consists of N (1≤N≤500000) vertices in
which, well, (almost clean) money is growing (contrary to the old saying that money doesn’t grow
on trees). The vertices are numbered from 0 to N-1, with vertex 0 being the root of the tree. Every
vertex i except vertex 0 has a parent p(i) in the tree, such that p(i)<i. Initially, every vertex
contains v(i) (0≤v(i)<1000000007) monetary units. Due to its special properties, the tree has
attracted the attention of a large money laundering organization, who wants to use the tree for its
money “cleansing” business. This organization wants to execute Q (1≤Q≤50000) operations on
the tree. Each operation consists of two steps:
1) In step 1, K (1≤K≤1000) vertices from the tree are chosen: x(1), …, x(K) (0≤x(i)≤N-1) –
the same vertex may be selected multiple times here. In each of these vertices, an
amount of monetary units is added (thus increasing the amount of monetary units in
them). More exactly, y(i) (0≤y(i)<1000000007) monetary units are added to the selected
vertex x(i) (1≤i≤K).
2) In step 2, two vertices u and v (0≤u,v≤N-1) are chosen and the organization wants to
know the total amount of money found in the vertices located on the unique path in the
tree between the vertices u and v (with u and v inclusive).

The organization hired you to find the answer for step 2 of each of the Q operations and promised
you a hefty amount of money if you succeed.

Input
The first line of input contains the number of tree vertices N. The next N-1 lines contain two
space-separated integers, p(i) and i, each describing an edge of the tree. The next line contains
N space-separated values: the initial amount of monetary units in each vertex, v(0), …, v(N-1).
The next line contains the number of operations Q. Each of the next Q lines describes an
operation. Each operation is described by 9 space-separated integers, in this order: K, x(1), y(1),
A, B, C, D, u, v (0≤A,B,C,D<1000000007). The values x(2≤i≤K) and y(2≤i≤K) are generated as
follows:
x(i) = (A*x(i-1) + B) modulo N
y(i) = (C*y(i-1) + D) modulo 1000000007

Output
For each of the Q operations print a line containing the answer to step 2 of the operation. When
computing the answer for an operation, the effects of steps 1 from previous operations need to be
considered, too (i.e. after adding y(i) monetary units to a vertex x(i), these units remain added to
the vertex when executing subsequent operations, too).

acm

Sample input Sample output Explanation
4
0 1
0 3
1 2
1 2 3 4
3
1000 1 1 1 0 1 0 0 2
2 0 5 1 1 2 2 2 3
1 3 7 999 999 999 999 1 3
1006
1027
1031

In the first operation the value 1 is added
1000 times to vertex 1 (note A=C=1,
B=D=0). The path between 0 and 2
contains the vertices 0, 1 and 2. The total
amount of monetary units in them is 1006.
In operation 2: x(1)=0, y(1)=5, x(2)=1,
y(2)=12. The path between 2 and 3 contains
all the vertices of the tree.
In operation 3: K=1, so A, B, C, D are
irrelevant.

题意:给你一棵n个节点的树(n<=5e5),现在可以进行至多Q次操作(Q<=5e4),每次至多可以给k个节点(k<=1000)增加一个数值,然后每个操作都有一个询问(u,v),问从u到v的简单路径上的节点权值和。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#define MM(a,b) memset(a,b,sizeof(a));
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=5*1e5+10;
const double pi=acos(-1); int n,siz[N],dep[N],son[N],treepos[N],
top[N],par[N],x[1005],y[1005];
ll tree[N];
vector<int> G[N]; void add_edge(int u,int v)
{
G[u].push_back(v);
G[v].push_back(u);
} int dfs_clock; void dfs1(int u,int father,int depth)
{
siz[u]=1;
dep[u]=depth;
son[u]=-1;
par[u]=father;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(v==father) CT;
dfs1(v,u,depth+1);
siz[u]+=siz[v];
if(son[u]==-1||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
top[u]=tp;
treepos[u]=++dfs_clock;
if(son[u]==-1) return;
dfs2(son[u],tp);
for(int i=0;i<G[u].size();i++) {
int v=G[u][i];
if(v==par[u]||v==son[u]) CT;
dfs2(v,v);
}
} int lowbit(int i)
{
return (i&(-i));
} void add(int pos,int val)
{
while(pos<=n) {
tree[pos]+=val;
pos+=lowbit(pos);
}
} ll tfind(int x)
{
ll res=0;
while(x>=1){
res+=tree[x];
x-=lowbit(x);
}
return res;
} ll query(int a,int b)
{
if(a>b) swap(a,b);
return tfind(b)-tfind(a-1);
} ll ans(int u,int v)
{
ll res=0,tu=top[u],tv=top[v];
while(tu!=tv) {
if(dep[tu]<dep[tv]){
swap(tu,tv);
swap(u,v);
}
int l=treepos[tu],r=treepos[u];
res+=query(l,r);
u=par[tu];
tu=top[u];
}
if(dep[u]<dep[v]) swap(u,v);
res+=query(treepos[v],treepos[u]);
return res;
} int main()
{
while(~SC("%d",&n))
{
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<n;i++) {
int u,v;
SC("%d%d",&u,&v);
add_edge(u+1,v+1);
} MM(tree,0);
dfs_clock=0; dfs1(1,0,1);
dfs2(1,1); for(int i=1;i<=n;i++) {
int x;SC("%d",&x);
add(treepos[i],x);
} int q;
SC("%d",&q);
while(q--){
int k,u,v;ll A,B,C,D;
SC("%d%d%d%lld%lld%lld%lld%d%d",&k,&x[1],&y[1],&A,&B,&C,&D,&u,&v);
add(treepos[x[1]+1],y[1]);
for(int i=2;i<=k;i++){
x[i]=(A*x[i-1]+B)%n;
y[i]=(C*y[i-1]+D)%1000000007;
add(treepos[x[i]+1],y[i]);
}
printf("%lld\n",ans(u+1,v+1));
} }
return 0;
}

  分析:学了下树链剖分,树连剖分主要是用于对树进行路径求和统计以及去最大值最小值之类的,第一次dfs,找到重儿子,并给

节点深度表好号,记录下每个节点额父节点,,第二次dfs,构建树链,同时建好BIT或线段树,,最后然后路径求和的时候,先要统计链顶节点深度大的。

TTTTTTTTTTTT Gym 100818B Tree of Almost Clean Money 树连剖分+BIT 模板题的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. D. Happy Tree Party CodeForces 593D【树链剖分,树边权转点权】

    Codeforces Round #329 (Div. 2) D. Happy Tree Party time limit per test 3 seconds memory limit per te ...

  4. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  5. Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)

    题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...

  6. 【 Gym - 101138J 】Valentina and the Gift Tree(树链剖分)

    BUPT2017 wintertraining(15) 4 D Gym - 101138J 数据 题意 n个节点的一棵树,每个节点的权值为g,q个询问,树上的节点U-V,求U到V的路径的最大子段和. ...

  7. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  8. 【BZOJ-4353】Play with tree 树链剖分

    4353: Play with tree Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 31  Solved: 19[Submit][Status][ ...

  9. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

随机推荐

  1. NOIP2012 借教室 题解 洛谷P1083

    一看就是暴力 好吧,其实是线段树或差分+二分,这里用的是差分+二分的做法. 二分部分的代码,套个二分板子就行 ,right=m; while(left<right)//二分 { ; ; else ...

  2. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  3. 【Python基础】06_Python中的函数

    1.函数的定义 def 函数名(): 函数封装的代码 …… 注:函数前后应该保留两个空行 2.函数的使用 直接使用函数名()调用函数块. def say_hello(): print("He ...

  4. 正则表达式BREs,EREs,PREs的比较

    目录 正则表达式BREs,EREs,PREs的比较 正则表达式分类: Linux 中常用文本工具与正则表达式的关系 grep , egrep 正则表达式特点: sed 正则表达式特点 Awk(gawk ...

  5. 第十章 ZYNQ-MIZ701 DDR3 PS读写操作方案

      本编文章的目的主要用简明的方法在纯PS里对DDR3进行读写. 本文所使用的开发板是Miz701 PC 开发环境版本:Vivado 2015.4 Xilinx SDK 2015.4 10.0本章难度 ...

  6. ts转js 并压缩

    1,在线编译,进入typescript官网http://www.typescriptlang.org/,点击里面的playground就可以直接写代码了. 2,在本地编译运行Typescript需要使 ...

  7. 禅道工具的下载和使用(原地址:https://www.cnblogs.com/ydnice/p/5800256.html)

    下载地址:http://sourceforge.net/projects/zentao/files/8.2/ZenTaoPMS.8.2.stable.exe/download 1.解压ZenTaoPM ...

  8. MyBatis 源码篇-SQL 执行的流程

    本章通过一个简单的例子,来了解 MyBatis 执行一条 SQL 语句的大致过程是怎样的. 案例代码如下所示: public class MybatisTest { @Test public void ...

  9. hdu 1502 大数dp

    对于每一个dp的问题 从其最优解的结构(分哪几种形式或者情况)入手 然后分析状态 这样就比较好找出状态转方程这里数据结构的选择很简单 顺序数组就可以 填充的方式顺序填充就可以 然后这道题目卡了我大数. ...

  10. 轻松搭建CAS 5.x系列(2)-搭建HTTPS的SSO SERVER端

    概要说明 CAS要求,必须使用HTTPS的服务,否则就只等实现登录,无法实现单点登录.科普下HTTPS,网站有HTTP和HTTPS两种协议.HTTP是浏览器到网站之间是明文传输,比如你输入帐号名和密码 ...