Problem B
Tree of Almost Clean Money

Input File: B.in
Output File: standard output
Time Limit: 4 seconds (C/C++)
Memory Limit: 256 megabytes

The tree of Almost Clean Money (or ACM Tree, for short) consists of N (1≤N≤500000) vertices in
which, well, (almost clean) money is growing (contrary to the old saying that money doesn’t grow
on trees). The vertices are numbered from 0 to N-1, with vertex 0 being the root of the tree. Every
vertex i except vertex 0 has a parent p(i) in the tree, such that p(i)<i. Initially, every vertex
contains v(i) (0≤v(i)<1000000007) monetary units. Due to its special properties, the tree has
attracted the attention of a large money laundering organization, who wants to use the tree for its
money “cleansing” business. This organization wants to execute Q (1≤Q≤50000) operations on
the tree. Each operation consists of two steps:
1) In step 1, K (1≤K≤1000) vertices from the tree are chosen: x(1), …, x(K) (0≤x(i)≤N-1) –
the same vertex may be selected multiple times here. In each of these vertices, an
amount of monetary units is added (thus increasing the amount of monetary units in
them). More exactly, y(i) (0≤y(i)<1000000007) monetary units are added to the selected
vertex x(i) (1≤i≤K).
2) In step 2, two vertices u and v (0≤u,v≤N-1) are chosen and the organization wants to
know the total amount of money found in the vertices located on the unique path in the
tree between the vertices u and v (with u and v inclusive).

The organization hired you to find the answer for step 2 of each of the Q operations and promised
you a hefty amount of money if you succeed.

Input
The first line of input contains the number of tree vertices N. The next N-1 lines contain two
space-separated integers, p(i) and i, each describing an edge of the tree. The next line contains
N space-separated values: the initial amount of monetary units in each vertex, v(0), …, v(N-1).
The next line contains the number of operations Q. Each of the next Q lines describes an
operation. Each operation is described by 9 space-separated integers, in this order: K, x(1), y(1),
A, B, C, D, u, v (0≤A,B,C,D<1000000007). The values x(2≤i≤K) and y(2≤i≤K) are generated as
follows:
x(i) = (A*x(i-1) + B) modulo N
y(i) = (C*y(i-1) + D) modulo 1000000007

Output
For each of the Q operations print a line containing the answer to step 2 of the operation. When
computing the answer for an operation, the effects of steps 1 from previous operations need to be
considered, too (i.e. after adding y(i) monetary units to a vertex x(i), these units remain added to
the vertex when executing subsequent operations, too).

acm

Sample input Sample output Explanation
4
0 1
0 3
1 2
1 2 3 4
3
1000 1 1 1 0 1 0 0 2
2 0 5 1 1 2 2 2 3
1 3 7 999 999 999 999 1 3
1006
1027
1031

In the first operation the value 1 is added
1000 times to vertex 1 (note A=C=1,
B=D=0). The path between 0 and 2
contains the vertices 0, 1 and 2. The total
amount of monetary units in them is 1006.
In operation 2: x(1)=0, y(1)=5, x(2)=1,
y(2)=12. The path between 2 and 3 contains
all the vertices of the tree.
In operation 3: K=1, so A, B, C, D are
irrelevant.

题意:给你一棵n个节点的树(n<=5e5),现在可以进行至多Q次操作(Q<=5e4),每次至多可以给k个节点(k<=1000)增加一个数值,然后每个操作都有一个询问(u,v),问从u到v的简单路径上的节点权值和。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#define MM(a,b) memset(a,b,sizeof(a));
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=5*1e5+10;
const double pi=acos(-1); int n,siz[N],dep[N],son[N],treepos[N],
top[N],par[N],x[1005],y[1005];
ll tree[N];
vector<int> G[N]; void add_edge(int u,int v)
{
G[u].push_back(v);
G[v].push_back(u);
} int dfs_clock; void dfs1(int u,int father,int depth)
{
siz[u]=1;
dep[u]=depth;
son[u]=-1;
par[u]=father;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(v==father) CT;
dfs1(v,u,depth+1);
siz[u]+=siz[v];
if(son[u]==-1||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
top[u]=tp;
treepos[u]=++dfs_clock;
if(son[u]==-1) return;
dfs2(son[u],tp);
for(int i=0;i<G[u].size();i++) {
int v=G[u][i];
if(v==par[u]||v==son[u]) CT;
dfs2(v,v);
}
} int lowbit(int i)
{
return (i&(-i));
} void add(int pos,int val)
{
while(pos<=n) {
tree[pos]+=val;
pos+=lowbit(pos);
}
} ll tfind(int x)
{
ll res=0;
while(x>=1){
res+=tree[x];
x-=lowbit(x);
}
return res;
} ll query(int a,int b)
{
if(a>b) swap(a,b);
return tfind(b)-tfind(a-1);
} ll ans(int u,int v)
{
ll res=0,tu=top[u],tv=top[v];
while(tu!=tv) {
if(dep[tu]<dep[tv]){
swap(tu,tv);
swap(u,v);
}
int l=treepos[tu],r=treepos[u];
res+=query(l,r);
u=par[tu];
tu=top[u];
}
if(dep[u]<dep[v]) swap(u,v);
res+=query(treepos[v],treepos[u]);
return res;
} int main()
{
while(~SC("%d",&n))
{
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<n;i++) {
int u,v;
SC("%d%d",&u,&v);
add_edge(u+1,v+1);
} MM(tree,0);
dfs_clock=0; dfs1(1,0,1);
dfs2(1,1); for(int i=1;i<=n;i++) {
int x;SC("%d",&x);
add(treepos[i],x);
} int q;
SC("%d",&q);
while(q--){
int k,u,v;ll A,B,C,D;
SC("%d%d%d%lld%lld%lld%lld%d%d",&k,&x[1],&y[1],&A,&B,&C,&D,&u,&v);
add(treepos[x[1]+1],y[1]);
for(int i=2;i<=k;i++){
x[i]=(A*x[i-1]+B)%n;
y[i]=(C*y[i-1]+D)%1000000007;
add(treepos[x[i]+1],y[i]);
}
printf("%lld\n",ans(u+1,v+1));
} }
return 0;
}

  分析:学了下树链剖分,树连剖分主要是用于对树进行路径求和统计以及去最大值最小值之类的,第一次dfs,找到重儿子,并给

节点深度表好号,记录下每个节点额父节点,,第二次dfs,构建树链,同时建好BIT或线段树,,最后然后路径求和的时候,先要统计链顶节点深度大的。

TTTTTTTTTTTT Gym 100818B Tree of Almost Clean Money 树连剖分+BIT 模板题的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. D. Happy Tree Party CodeForces 593D【树链剖分,树边权转点权】

    Codeforces Round #329 (Div. 2) D. Happy Tree Party time limit per test 3 seconds memory limit per te ...

  4. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  5. Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)

    题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...

  6. 【 Gym - 101138J 】Valentina and the Gift Tree(树链剖分)

    BUPT2017 wintertraining(15) 4 D Gym - 101138J 数据 题意 n个节点的一棵树,每个节点的权值为g,q个询问,树上的节点U-V,求U到V的路径的最大子段和. ...

  7. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  8. 【BZOJ-4353】Play with tree 树链剖分

    4353: Play with tree Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 31  Solved: 19[Submit][Status][ ...

  9. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

随机推荐

  1. Graduation(思维,树上取叶子几次取完)

    题意:https://codeforces.com/group/ikIh7rsWAl/contest/259944/problem/G 给你一颗树(可能有好几棵),你每次最多只能去掉k个叶子节点,问你 ...

  2. 数据库优化SQL

    sql优化规则: 1.对于查询,尽量不要使用全表扫描,尽量在where子句以及order by所对应的字段建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放 ...

  3. MySQL - 性能优化 & MySQL常见SQL错误用法(转载)

    1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如: , ; 一般DBA想到的办法是在type, name, create_time字段上加组合索引.这样条件排序 ...

  4. 怎样启动Nginx并设置开机自动运行

    1. 启动 sudo systemctl start nginx.service 2. 设置开机自动运行 sudo systemctl enable nginx.service

  5. Linux环境下安装Nginx及其使用

    https://www.jb51.net/article/136161.htm 一.查看CentOS的版本 ? 1 cat /etc/redhat-release 二.添加资源库 在 CentOS 系 ...

  6. LeetCode 腾讯精选50题--2的幂

    在二进制中,2的幂的数字用二进制表示时只会有一位表示为1,其余都为0,基于这个前提,可以有两种方案: 1. 做位移操作 2. 与数值取反并与原数值做与操作,判断是否与原来的数值相同 对于方案1,我的想 ...

  7. wepy2.0中使用vant-weapp组件

    npm i vant-weapp -S --production 在项目下的package.json下看是否有了vant字段 最最最重要的,在引入的时候通过module映入 <config> ...

  8. JavaWeb-用过滤器修改请求的返回状态码

    问题: 客户SDK对接服务,默认只识别200和非200的请求状态码.需要修改当前应用的状态码(如将201转为200) 解决方案:通过扩展HttpServletResponseWrapper,获取到每个 ...

  9. 9.动态SQL

    动态 SQL,主要用于解决查询条件不确定的情况:在程序运行期间,根据用户提交的查 询条件进行查询. 提交的查询条件不同,执行的 SQL 语句不同.若将每种可能的情况均逐一 列出,对所有条件进行排列组合 ...

  10. 5.Servlet 对象(request-response)

    /*ServletResponse*/ /*responese常见应用*/ 1.向客户端输出中文数据 (分别以OutputStream 和 PrintWriter输出) 2.文件下载和中文文件的下载 ...