题目链接:戳我

首先注意这张图有可能不连通!!

然后我们考虑对于每一个联通块,首先任意确定一个点,给它设最终值为x,然后进行搜索。(因为对于一个联通块而言,我们知道一个点的最终值,那么整个联通块上面点的值就都知道了)

我们发现这些值只有-x+b或者x+b两种情况。

当一个点被访问到了第二次,如果两次x的系数一样且b不一样,就可以直接输出NIE。如果系数不一样,那么也就可以确认x的大小了(之后记得还要检验一下子)。

如果没有点被访问两次或者以上,那么就是一些不等式的限制条件,我们直接解不等式就行啦。而总数的极值一定也在x的极值上QAQ

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<ctime>
#define MAXN 500010
#define MAXM 3000010
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48); ch=getchar();}
return x*f;
}
int n,m,t,cnt,tot;
int head[MAXN],p[MAXN],done[MAXN],col[MAXN],vec[MAXN];
long long minn_ans,maxx_ans;
struct Node{int k,b;}node[MAXN];
struct Edge{int nxt,to,dis;}edge[MAXM<<1];
inline void add(int from,int to,int dis)
{
edge[++t].nxt=head[from],edge[t].to=to,edge[t].dis=dis;
head[from]=t;
}
inline void calc(int x,int cur_ans)
{
if(cur_ans)
{
for(int i=1;i<=tot;i++)
{
int now=vec[i];
int sum=node[now].k*cur_ans+node[now].b;
if(sum<0||sum>p[now])
{
printf("NIE\n");
exit(0);
}
else
{
minn_ans+=p[now]-sum;
maxx_ans+=p[now]-sum;
}
}
}
else
{
int l=0,r=0x3f3f3f3f;
for(int i=1;i<=tot;i++)
{
int now=vec[i];
if(node[now].k==-1)
{
l=max(l,node[now].b-p[now]);
r=min(r,node[now].b);
}
else
{
l=max(l,-node[now].b);
r=min(r,p[now]-node[now].b);
}
if(l>r)
{
printf("NIE\n");
exit(0);
}
}
long long cur_ans1=0,cur_ans2=0;
for(int i=1;i<=tot;i++)
{
int now=vec[i];
cur_ans1+=p[now]-node[now].k*l-node[now].b;
cur_ans2+=p[now]-node[now].k*r-node[now].b;
}
minn_ans+=min(cur_ans1,cur_ans2);
maxx_ans+=max(cur_ans1,cur_ans2);
}
return;
}
inline void paint(int x,int color)
{
tot=0;
int cur_ans=0;
queue<int>q;
q.push(x);
node[x]=(Node){1,0};
while(!q.empty())
{
if((double)clock()/CLOCKS_PER_SEC>1.8)
{
printf("NIE\n");
exit(0);
}
int u=q.front();q.pop();
if(!col[u]) vec[++tot]=u;
col[u]=color;
for(int i=head[u];i;i=edge[i].nxt)
{
int v=edge[i].to;
int v_k=(node[u].k==1)?-1:1;
int v_b=edge[i].dis-node[u].b;
if(!col[v])
{
node[v]=(Node){v_k,v_b};
q.push(v);
continue;
}
if(col[v]==color)
{
if(node[v].k==v_k&&node[v].b!=v_b)
{
printf("NIE\n");
exit(0);
}
if(node[v].k!=v_k)
{
int cur=(node[v].b-v_b)/(v_k-node[v].k);
if(cur*(v_k-node[v].k)!=(node[v].b-v_b))
{
printf("NIE\n");
exit(0);
}
if(!cur_ans) cur_ans=cur;
else if(cur_ans!=cur)
{
printf("NIE\n");
exit(0);
}
}
}
}
}
calc(x,cur_ans);
return;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
n=read(),m=read();
for(int i=1;i<=n;i++) p[i]=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),w=read();
add(x,y,w),add(y,x,w);
}
for(int i=1;i<=n;i++)
{
if(!col[i])
cnt++,paint(i,cnt);
}
printf("%lld %lld\n",minn_ans,maxx_ans);
return 0;
}

POI2012 BEZ-Minimalist Security | noi.ac #537 Graph的更多相关文章

  1. 【BZOJ2801】[Poi2012]Minimalist Security BFS

    [BZOJ2801][Poi2012]Minimalist Security Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i),并且对于 ...

  2. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  3. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  4. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  5. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  6. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  7. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  8. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  9. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

随机推荐

  1. T100——q查询,子母查询(汇总——明细)练习笔记

    范例: 代码: #add-point:input段落 name="ui_dialog.input" INPUT BY NAME g_master.bdate,g_master.ed ...

  2. CNN网络结点计算总结(1998)

    图 来源:Gradient-Based Learning Applied to Document Recognition 参阅CSDN:https://blog.csdn.net/dcxhun3/ar ...

  3. Spring实战(十二) Spring中注入AspectJ切面

    1.Spring AOP与AspectJ Spring AOP与AspectJ相比,是一个功能比较弱的AOP解决方案. AspectJ提供了许多它不能支持的类型切点,如在创建对象时应用通知,构造器切点 ...

  4. ArrayList,LinkedList,Vector区别.TreeSet,TreeSet,LinkedHashSet区别

    ArrayList: 基于数组的数据结构,地址连续,一旦数据保存好了,查询效率比较高,但是因为其地址连续,所以增删数据需要移动数据,影响速度 内部数组长度默认为10,当需要扩容时,数组长度按1.5倍增 ...

  5. QT 安卓动态获取权限

    一:在AndroidManifest.xml文件中赋予相关权限 二: package ckdz.Appproject; import android.Manifest; import android. ...

  6. centos 配置rsync+inotify数据实时同步

    何为rsync? 定义: rsync是一个开源的快速备份工具,可以在不同主机之间镜像同步整个目录树,支持增量备份,保持链接和权限,非常适用于异地备份 何为源端和发起端? 在远程同步过程中,负责发起rs ...

  7. element-ui中关闭对话框清空验证,清除form表单数据

    对于elementUI中对话框,点击对话框和关闭按钮 怎么清空验证,清空form表单,避免二次点击还会有 验证错误的提示.今天终于自己查资料解决了,分享给大家 1.首先在你的对话框 取消按钮 加一个c ...

  8. vue进阶:vue-router之导航守卫、路由元信息、路由懒加载

    1.导航被触发 2.在失活的组件里调用离开守卫:beforeRouteLeave —— 组件内守卫(离开组件). 3.调用全局的beforeEach守卫 —— 全局守卫(进入组件). 4.在重用组件里 ...

  9. ConfigurableApplicationContext

    转自:https://blog.csdn.net/weixin_39165515/article/details/77169231 此接口结合了所有ApplicationContext需要实现的接口. ...

  10. 7.Struts2拦截器及源码分析

    1.Struts2架构图 2.Struts2 执行过程分析 1.首先,因为使用 struts2 框架,请求被Struts2Filter 拦截 2.Struts2Filter  调用 DisPatche ...