题目描述

sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧。

在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手。于是她的好朋友九条可怜酱给她出了一道题。

给出一个长度为 nn 的数列 AA,接下来有 mm 次操作,操作有三种:

  1. 对于所有的 i∈[l,r]i∈[l,r],将 AiAi 变成 Ai+xAi+x。
  2. 对于所有的 i∈[l,r]i∈[l,r],将 AiAi 变成 ⌊Ai‾‾√⌋⌊Ai⌋。
  3. 对于所有的 i∈[l,r]i∈[l,r],询问 AiAi 的和。

作为一个不怎么熟练的初学者,sylvia 想了好久都没做出来。而可怜酱又外出旅游去了,一时间联系不上。于是她决定向你寻求帮助:你能帮她解决这个问题吗。

输入格式

第一行两个数:n,m。

接下来一行 n 个数 Ai。

接下来 m 行中,第 i 行第一个数 ti 表示操作类型:

若 ti=1,则接下来三个整数 li,ri,xi,表示操作一。

若 ti=2,则接下来三个整数 li,ri,表示操作二。

若 ti=3,则接下来三个整数 li,ri,表示操作三。

输出格式

对于每个询问操作,输出一行表示答案。

样例一

input

5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5

output

5
6

样例二

见样例数据下载。

限制与约定

测试点编号 n 的规模 m 的规模 其他约定
1 n≤3000 m≤3000  
2
3
4 n≤100000 m≤100000 数据随机生成
5
6 ti≠1
7
8  
9
10

对于所有数据,保证有 1≤li≤ri≤n,1≤Ai,xi≤105

时间限制:1s

空间限制:256MB

题解

orz 北大爷yyy。

用线段树维护区间的最大、最小值和答案。每次区间取根号的时候我们发现区间的极差都会减少,最后会减少到0。可以证明这个次数是loglogn级别的(开根相当于指数一直除以2),所以可以暴力递归进去改。但是区间加会导致区间的极差发生变化也有可能不变。所以我们在做开根号的时候只有在区间的极差会变的情况下我们暴力递归进去改,否则就直接区间减。可以证明这样的复杂度是NlogNloglogN的。

代码

 #include <cstdio>
#include <cmath> #define R register
#define maxn 1048586
typedef long long ll;
int a[maxn];
ll sum[maxn], mn[maxn], mx[maxn], tag[maxn], mnnum[maxn], mxnum[maxn];
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
inline void update(R int o)
{
sum[o] = sum[o << ] + sum[o << | ];
mn[o] = dmin(mn[o << ], mn[o << | ]);
mx[o] = dmax(mx[o << ], mx[o << | ]);
}
inline void pushdown(R int o, R int l, R int r, R int mid)
{
if (tag[o] != )
{
sum[o << ] += 1ll * tag[o] * (mid - l + );
sum[o << | ] += 1ll * tag[o] * (r - mid);
mn[o << ] += tag[o]; mx[o << ] += tag[o];
mn[o << | ] += tag[o]; mx[o << | ] += tag[o];
tag[o << ] += tag[o];
tag[o << | ] += tag[o];
tag[o] = ;
}
}
void build(R int o, R int l, R int r)
{
if (l == r)
{
mn[o] = mx[o] = sum[o] = a[l];
mnnum[o] = mxnum[o] = ;
return ;
}
R int mid = l + r >> ;
build(o << , l, mid);
build(o << | , mid + , r);
update(o);
}
int ql, qr, qv;
void modify1(R int o, R int l, R int r)
{
if (ql <= l && r <= qr)
{
tag[o] += qv;
sum[o] += 1ll * qv * (r - l + );
mx[o] += qv;
mn[o] += qv;
return ;
}
R int mid = l + r >> ;
pushdown(o, l, r, mid);
if (ql <= mid) modify1(o << , l, mid);
if (mid < qr) modify1(o << | , mid + , r);
update(o);
}
inline bool check(R ll x)
{
return (ll) sqrt(x) * (ll) sqrt(x) == x;
}
void modify2(R int o, R int l, R int r)
{
if (ql <= l && r <= qr)
{
if (mx[o] == mn[o] || (mx[o] - mn[o] == && check(mx[o])))
{
R ll p = mx[o] - (ll) sqrt(mx[o]);
tag[o] -= p;
sum[o] -= p * (r - l + );
mx[o] -= p;
mn[o] -= p;
}
else
{
R int mid = l + r >> ;
pushdown(o, l, r, mid);
modify2(o << , l, mid);
modify2(o << | , mid + , r);
update(o);
}
return ;
}
R int mid = l + r >> ;
pushdown(o, l, r, mid);
if (ql <= mid) modify2(o << , l, mid);
if (mid < qr) modify2(o << | , mid + , r);
update(o);
}
inline ll query(R int o, R int l, R int r)
{
if (ql <= l && r <= qr) return sum[o];
R int mid = l + r >> ; R ll ret = ;
pushdown(o, l, r, mid);
if (ql <= mid) ret += query(o << , l, mid);
if (mid < qr) ret += query(o << | , mid + , r);
return ret;
}
int main()
{
R int n, m; scanf("%d%d", &n, &m);
for (R int i = ; i <= n; ++i) scanf("%d", a + i);
build(, , n);
for (R int i = ; i <= m; ++i)
{
R int opt, l, r; scanf("%d%d%d", &opt, &l, &r);
if (opt == )
{
R int x; scanf("%d", &x);
ql = l; qr = r; qv = x;
modify1(, , n);
}
else if (opt == )
{
ql = l; qr = r;
modify2(, , n);
}
else
{
ql = l; qr = r;
printf("%lld\n", query(, , n));
}
}
return ;
}

【UOJ#228】 基础数据结构练习题的更多相关文章

  1. 【线段树】uoj#228. 基础数据结构练习题

    get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...

  2. uoj #228. 基础数据结构练习题 线段树

    #228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...

  3. uoj#228 基础数据结构练习题

    题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...

  4. uoj#228. 基础数据结构练习题(线段树区间开方)

    题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...

  5. uoj#228. 基础数据结构练习题(线段树)

    传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...

  6. UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题

    题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...

  7. UOJ #228 - 基础数据结构练习题(势能线段树+复杂度分析)

    题面传送门 神仙题. 乍一看和经典题 花神游历各国有一点像,只不过多了一个区间加操作.不过多了这个区间加操作就无法再像花神游历各国那样暴力开根直到最小值为 \(1\) 为止的做法了,稍微感性理解一下即 ...

  8. 【UOJ#228】基础数据结构练习题 线段树

    #228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...

  9. 【UOJ228】基础数据结构练习题(线段树)

    [UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...

随机推荐

  1. Ansible-批量导入key(入门)

    系统是centos7.5 python2.75 yum install -y ansible ssh-keygen -t rsa vim /etc/ansible/hosts 定义的一个hello组: ...

  2. 【sublime Text】关闭sublime的更新提醒和激活提醒

    下载了原版的sublime Text,未激活的,每次启动都会提醒要去更新么?需要激活吧 ? 超级烦.[谁让没有激活呢?] 那没办法 ,激活吧! Help ---- Enter License--> ...

  3. 【原创】大叔经验分享(69)docker启动java应用的时区问题

    在docker中启动tomcat或java类应用,获取时间默认是UTC时间,这是因为容器内的locale没有设置为东8区,最简单的方式是增加JAVA_OPTS 如果是java,直接在java命令后增加 ...

  4. 使用JavaFX开发桌面程序(一)

    使用JavaFX开发桌面程序 注:我也是JAVA FX的初学者之一,自己在学习的时候踩了许多的坑,中文英文的资料查了不少,但是觉得FX技术和其他热门技术相比,教程还是太少了.这里就尽量做一点微小的贡献 ...

  5. Windows Class Styles

    CS_VREDRAW:当窗口水平方向的宽度变化时重绘整个窗口 CS_HREDRAW:当窗口垂直方向的宽度变化时重绘整个窗口 CS_DBLCLKS:指针在属于此类的窗体内部,并且用户双击时,收到一个双击 ...

  6. 10 Django之Ajax请求

    一.什么是Ajax技术? 异步的JavaScript和XML.使用Javascript语言与服务器进行异步交互,传输的数据为XML(更多的使用json数据).Ajax不是一门新的编程语言,而是一种使用 ...

  7. IntelliJ IDEA(Community版本)本地模式的下载、安装及其使用

    对于初学者来说可以先使用免费的社区版本练练手. ideaIC-2017.3.5——>社区版 ideaIU-2017.3.5——>旗舰版 一.IntelliJ IDEA(Community版 ...

  8. 6.声明式异常处理、I18N

    声明式异常处理 1.在Action 中进行异常映射 <exception-mapping result="error" exception="java.sql.SQ ...

  9. Zabbix 监控Windows磁盘IO

    Windows下,打开cmd输入 typeperf -qx > c:\typeperf.txt #打开c:\typeperf.txt文件 windows性能计数器里面包含windows相关数值 ...

  10. PLSQL功能一览(1/2)

    用了Oracle几年了,除了PLSQL几乎就没用过别的工具.临时起义想看看PLSQL有哪些功能是我平时没注意的,别是一直有好办法,我却用着笨办法. 本文针对PLSQL12.0.7 1.登录以后使用My ...