【UOJ#228】 基础数据结构练习题
题目描述
sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧。
在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手。于是她的好朋友九条可怜酱给她出了一道题。
给出一个长度为 nn 的数列 AA,接下来有 mm 次操作,操作有三种:
- 对于所有的 i∈[l,r]i∈[l,r],将 AiAi 变成 Ai+xAi+x。
- 对于所有的 i∈[l,r]i∈[l,r],将 AiAi 变成 ⌊Ai‾‾√⌋⌊Ai⌋。
- 对于所有的 i∈[l,r]i∈[l,r],询问 AiAi 的和。
作为一个不怎么熟练的初学者,sylvia 想了好久都没做出来。而可怜酱又外出旅游去了,一时间联系不上。于是她决定向你寻求帮助:你能帮她解决这个问题吗。
输入格式
第一行两个数:n,m。
接下来一行 n 个数 Ai。
接下来 m 行中,第 i 行第一个数 ti 表示操作类型:
若 ti=1,则接下来三个整数 li,ri,xi,表示操作一。
若 ti=2,则接下来三个整数 li,ri,表示操作二。
若 ti=3,则接下来三个整数 li,ri,表示操作三。
输出格式
对于每个询问操作,输出一行表示答案。
样例一
input
5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5
output
5
6
样例二
见样例数据下载。
限制与约定
| 测试点编号 | n 的规模 | m 的规模 | 其他约定 |
|---|---|---|---|
| 1 | n≤3000 | m≤3000 | |
| 2 | |||
| 3 | |||
| 4 | n≤100000 | m≤100000 | 数据随机生成 |
| 5 | |||
| 6 | ti≠1 | ||
| 7 | |||
| 8 | |||
| 9 | |||
| 10 |
对于所有数据,保证有 1≤li≤ri≤n,1≤Ai,xi≤105
时间限制:1s
空间限制:256MB
题解
orz 北大爷yyy。
用线段树维护区间的最大、最小值和答案。每次区间取根号的时候我们发现区间的极差都会减少,最后会减少到0。可以证明这个次数是loglogn级别的(开根相当于指数一直除以2),所以可以暴力递归进去改。但是区间加会导致区间的极差发生变化也有可能不变。所以我们在做开根号的时候只有在区间的极差会变的情况下我们暴力递归进去改,否则就直接区间减。可以证明这样的复杂度是NlogNloglogN的。
代码
#include <cstdio>
#include <cmath> #define R register
#define maxn 1048586
typedef long long ll;
int a[maxn];
ll sum[maxn], mn[maxn], mx[maxn], tag[maxn], mnnum[maxn], mxnum[maxn];
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
inline void update(R int o)
{
sum[o] = sum[o << ] + sum[o << | ];
mn[o] = dmin(mn[o << ], mn[o << | ]);
mx[o] = dmax(mx[o << ], mx[o << | ]);
}
inline void pushdown(R int o, R int l, R int r, R int mid)
{
if (tag[o] != )
{
sum[o << ] += 1ll * tag[o] * (mid - l + );
sum[o << | ] += 1ll * tag[o] * (r - mid);
mn[o << ] += tag[o]; mx[o << ] += tag[o];
mn[o << | ] += tag[o]; mx[o << | ] += tag[o];
tag[o << ] += tag[o];
tag[o << | ] += tag[o];
tag[o] = ;
}
}
void build(R int o, R int l, R int r)
{
if (l == r)
{
mn[o] = mx[o] = sum[o] = a[l];
mnnum[o] = mxnum[o] = ;
return ;
}
R int mid = l + r >> ;
build(o << , l, mid);
build(o << | , mid + , r);
update(o);
}
int ql, qr, qv;
void modify1(R int o, R int l, R int r)
{
if (ql <= l && r <= qr)
{
tag[o] += qv;
sum[o] += 1ll * qv * (r - l + );
mx[o] += qv;
mn[o] += qv;
return ;
}
R int mid = l + r >> ;
pushdown(o, l, r, mid);
if (ql <= mid) modify1(o << , l, mid);
if (mid < qr) modify1(o << | , mid + , r);
update(o);
}
inline bool check(R ll x)
{
return (ll) sqrt(x) * (ll) sqrt(x) == x;
}
void modify2(R int o, R int l, R int r)
{
if (ql <= l && r <= qr)
{
if (mx[o] == mn[o] || (mx[o] - mn[o] == && check(mx[o])))
{
R ll p = mx[o] - (ll) sqrt(mx[o]);
tag[o] -= p;
sum[o] -= p * (r - l + );
mx[o] -= p;
mn[o] -= p;
}
else
{
R int mid = l + r >> ;
pushdown(o, l, r, mid);
modify2(o << , l, mid);
modify2(o << | , mid + , r);
update(o);
}
return ;
}
R int mid = l + r >> ;
pushdown(o, l, r, mid);
if (ql <= mid) modify2(o << , l, mid);
if (mid < qr) modify2(o << | , mid + , r);
update(o);
}
inline ll query(R int o, R int l, R int r)
{
if (ql <= l && r <= qr) return sum[o];
R int mid = l + r >> ; R ll ret = ;
pushdown(o, l, r, mid);
if (ql <= mid) ret += query(o << , l, mid);
if (mid < qr) ret += query(o << | , mid + , r);
return ret;
}
int main()
{
R int n, m; scanf("%d%d", &n, &m);
for (R int i = ; i <= n; ++i) scanf("%d", a + i);
build(, , n);
for (R int i = ; i <= m; ++i)
{
R int opt, l, r; scanf("%d%d%d", &opt, &l, &r);
if (opt == )
{
R int x; scanf("%d", &x);
ql = l; qr = r; qv = x;
modify1(, , n);
}
else if (opt == )
{
ql = l; qr = r;
modify2(, , n);
}
else
{
ql = l; qr = r;
printf("%lld\n", query(, , n));
}
}
return ;
}
【UOJ#228】 基础数据结构练习题的更多相关文章
- 【线段树】uoj#228. 基础数据结构练习题
get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- uoj#228 基础数据结构练习题
题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...
- uoj#228. 基础数据结构练习题(线段树区间开方)
题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...
- uoj#228. 基础数据结构练习题(线段树)
传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...
- UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题
题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...
- UOJ #228 - 基础数据结构练习题(势能线段树+复杂度分析)
题面传送门 神仙题. 乍一看和经典题 花神游历各国有一点像,只不过多了一个区间加操作.不过多了这个区间加操作就无法再像花神游历各国那样暴力开根直到最小值为 \(1\) 为止的做法了,稍微感性理解一下即 ...
- 【UOJ#228】基础数据结构练习题 线段树
#228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...
- 【UOJ228】基础数据结构练习题(线段树)
[UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...
随机推荐
- 10.Bash的安装
10.Bash的安装本节提供了在 Bash支持的不同系统上的基本安装指导.本版本支持 GNU操作系统,几乎每个 UNIX版本,以及几个非 UNIX 系统,例如 BeOS 和 Interix.还有针对 ...
- extjs CheckboxGroup
// 复选框 var fxkGroup = new Ext.form.CheckboxGroup({ id : 'fxkGroup', xtype : 'checkboxgroup', name : ...
- 记一次配置阿里云ECS GPU计算型gn5实例
基础配置 CPU: Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz * 16 MEM: 120 GiB GPU: NVIDIA P100 * 2 OS: Ubunt ...
- 文件下载不可以使用ajax
参看网站:https://blog.csdn.net/fan510988896/article/details/71520390 总结一下为什么下载请求不能放在ajax里发送: 原因:因为respon ...
- webpack中使用html-webpack-plugin生成HTML文件并主动插入css和js引入标签
html-webpack-plugin clean-webpack-plugin 一.html-webpack-plugin 由于打包时生成的css样式文件和js脚本文件会采用hash值作为文件命名的 ...
- 创建json对象
jQuery创建json对象 方法二: <!DOCTYPE html> <html> <head> <meta charset="utf-8&quo ...
- Mycat1.6启动报NumberFormatException解决方案(server内存太大)
https://blog.csdn.net/lijieshare/article/details/84826280 2019-09-02 18:28:27,829 [ERROR][main] 2019 ...
- 【Git的基本操作四】永久删除文件后找回
永久删除文件后找回 1. 已经添加到本地库的文件 使用 reset 命令回退到未删除的历史记录即可 2.添加到缓存区,没有提交到本地库的文件找回 git reset --hard HEAD 命令即可找 ...
- VS2012隐藏输出窗口的快捷键是什么。
纯属用键盘无法直接关闭这个窗口.有一个变通的方法是,先切换到这个输出窗口(标题呈现高亮的蓝色),使用Alt+W打开窗口菜单,选H隐藏就可以关闭.使用Ctrl+Alt+o可再次打开.按ESC就可以了.我 ...
- zookeeper--为分布式应用提供协调服务
1.概述 zookeeper是一个开源的.分布式的.为分布式应用提供协调服务的Apache项目 zookeeper的工作机制 zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服 ...