To the Max

Time Limit: 1000MS
Memory Limit: 10000K

Total Submissions: 38573
Accepted: 20350

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output

15
 
题解:假设已经知道矩形的上下边界,比如知道矩形的区域的上下边界分别是第a行和第c行,现在要确定左右边界;

代码:

#include <iostream>
#define INF 2147483647
using namespace std;
int a[1010][1010];
int sum[1010][1010];//数组我开的比较大,这无所谓 int Maxsum(int n,int m)
{//求最大子矩阵之和
int i,j,k;
int Max=-INF;
for(i=0;i<=n;i++)
sum[i][0]=0;
for(i=1;i<=m;i++)
sum[0][i]=0;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
sum[j][m]=sum[j-1][m]+a[j][m];//sum[a][b]储存 第b列中 第1行到第a行之间所有元素的和
int tmp=sum[j][m]-sum[i-1][m];//此时tmp值为 第m列中 第i行到第j行之间所有元素之和
int big=tmp;
for(k=m-1;k>=1;k--)
{
if(tmp<0)
tmp=0;
sum[j][k]=sum[j-1][k]+a[j][k];
tmp+=sum[j][k]-sum[i-1][k];
big=max(big,tmp);
Max=max(big,Max);
}
}
}
return Max;
} int main()
{
int n,m,i,j;
cin>>n;
m=n;//这里可变为cin>>m,则矩阵是n*m
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
cin>>a[i][j];
cout<<Maxsum(n,m)<<endl;
return 0;
}

poj 1050 To the Max(最大子矩阵之和,基础DP题)的更多相关文章

  1. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  2. poj 1050 To the Max 最大子矩阵和 经典dp

    To the Max   Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  3. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  4. POJ 1050 To the Max (最大子矩阵和)

    题目链接 题意:给定N*N的矩阵,求该矩阵中和最大的子矩阵的和. 题解:把二维转化成一维,算下就好了. #include <cstdio> #include <cstring> ...

  5. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  6. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  7. POJ 1050 To the Max 暴力,基础知识 难度:0

    http://poj.org/problem?id=1050 设sum[i][j]为从(1,1)到(i,j)的矩形中所有数字之和 首先处理出sum[i][j],此时左上角为(x1,y1),右下角为(x ...

  8. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  9. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

随机推荐

  1. iOS开发系列通讯录、蓝牙、内购、GameCenter、iCloud、Passbook系统服务开

    --系统应用与系统服务 iOS开发过程中有时候难免会使用iOS内置的一些应用软件和服务,例如QQ通讯录.微信电话本会使用iOS的通讯录,一些第三方软件会在应用内发送短信等.今天将和大家一起学习如何使用 ...

  2. js不间断滚动

    CSS ul, li { margin: 0; padding: 0; } #scrollDiv { width: 300px; height: 25px; line-height: 25px; bo ...

  3. 重新想象 Windows 8.1 Store Apps (80) - 控件增强: WebView 之基本应用, POST 数据, 与 JavaScript 交互

    [源码下载] 重新想象 Windows 8.1 Store Apps (80) - 控件增强: WebView 之基本应用, POST 数据, 与 JavaScript 交互 作者:webabcd 介 ...

  4. csharp: Export or Import excel using NPOI

    excel 2003: using System; using System.Collections.Generic; using System.ComponentModel; using Syste ...

  5. AC自动机---病毒侵袭持续中

    HDU 3065 题目网址: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110773#problem/C Description 小t ...

  6. 机器学习实战 - 读书笔记(06) – SVM支持向量机

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...

  7. python 任意新闻正文提取

    在github上搜到一个正文提取程序,测试了一下基本可以对现在大多数大型新闻网站进行提取 后续我会分析一下这个程序的源码 使用非常简单 如下 # -*- coding: utf-8 -*- impor ...

  8. PHP simplexml_load_string 过滤<![CDATA[XXXX]]>

    首先说说过滤<![CDATA[XXXX]]>干嘛用的. 这东西主要是防止XML里面嵌套HTML标签导致XML样式错乱的. 过滤很简单: $response = str_replace( a ...

  9. Exchange 2013 、Lync 2013、SharePoint 2013

    Office办公系列 在企业中广泛应用,目前服务的客户当中,部分客户已经应用到了 Exchange.Lync.CRM.SharePoint等产品,在开发当中多多少少会涉及到集成,为了更好的服务客户.了 ...

  10. HTML5原生拖放实例分析

    HTML5提供了原生拖放功能的JavaScript API,使用起来很方便. 兼容性: 对于PC端浏览器,Firefox.Chrome.Safari支持良好,而IE和Edge浏览器有些特性不支持,如I ...