23.跳台阶问题[Fib]
【题目】
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间复杂度。
【分析】
首先我们考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。
现在我们再来讨论一般情况。我们把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)。因此n级台阶时的不同跳法的总数f(n)=f(n-1)+(f-2)。本质就是Fib数列。
【参考】
http://zhedahht.blog.163.com/blog/static/25411174200731844235261/
23.跳台阶问题[Fib]的更多相关文章
- C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...
- 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...
- [剑指Offer]2.变态跳台阶
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...
- 面试书上一些题目的整理:O(n)复杂度排序年龄 & 青蛙跳台阶
可以按照年龄的个数,设置99个桶,然后桶内处理. 青蛙跳台阶,每次1阶或者2阶,就是fib数 如果每次1到n阶,那么归纳法可得,是2^(n-1) 另外1*2 覆盖 2*n个矩阵的问题,仍然是Fib数. ...
- [剑指offer]10.斐波那契数列+青蛙跳台阶问题
10- I. 斐波那契数列 方法一 Top-down 用递归实现 def fibonacci(n): if n <= 0: return 0 if n == 1: return 1 return ...
- 编程艺术第十六~第二十章:全排列/跳台阶/奇偶调序,及一致性Hash算法
目录(?)[+] 第十六~第二十章:全排列,跳台阶,奇偶排序,第一个只出现一次等问题 作者:July.2011.10.16.出处:http://blog.csdn.net/v_JULY_v. 引言 ...
- 青蛙跳台阶(Fibonacci数列)
问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- 剑指OFFER之变态跳台阶(九度OJ1389)
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...
随机推荐
- UML 几种关系的理解
1,泛化关系 泛化关系的表现形式有3中,类A 集成类B ,接口C 继承 接口D ,或者类E实现类F. 2,组合关系 组合关系描述的是整体与局部的关系,一个整体有很多部分组成,即整体包含的部分. 例 ...
- FastDFS在centos上的安装配置与使用
FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合以文件为载体的在线服务.(百 ...
- POJ2286 The Rotation Game
Description The rotation game uses a # shaped board, which can hold 24 pieces of square blocks (see ...
- CODEVS1995 || TYVJ1863 黑魔法师之门
P1863 [Poetize I]黑魔法师之门 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源 ...
- DLUTOJ 1331 Maximum Sum
传送门 Time Limit: 1 Sec Memory Limit: 128 MB Description You are given an array of size N and anothe ...
- Android学习笔记02-Mac下编译java代码
在Mac OS上配置JDK 1.7. 一 下载 Mac版本的JDK1.7 从以下下载地址,下载Mac版本的JDk1.7 安装文件 jdk-7u79-macosx-x64.dmg. http://www ...
- jmap命令详解
1.命令基本概述 Jmap是一个可以输出所有内存中对象的工具,甚至可以将VM 中的heap,以二进制输出成文本.打印出某个java进程(使用pid)内存内的,所有‘对象’的情况(如:产生那些对象,及其 ...
- AngularJS 的数据绑定
单向绑定(ng-bind) 和 双向绑定(ng-model) 的区别 ng-bind 单向数据绑定($scope -> view),用于数据显示,简写形式是 {{}}. 1 <span n ...
- Python初学笔记
一.安装:直接通过软件管理程序,搜索Python,安装:安装过程中自定义路径,有个选项类似“add Python3.5 to Path”,勾选后便可以在cmd命令窗口,通过输入Python,启动Pyt ...
- URLDecoder与URLEncoder
网页中的表单使用POST方法提交时,数据内容的类型是 application/x-www-form-urlencoded,这种类型会: 1.字符"a"-"z", ...