http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html  //RNN and LSTM

http://handong1587.github.io/deep_learning/2015/10/09/saliency-prediction.html //saliency Predection

http://handong1587.github.io/deep_learning/2015/10/09/scene-labeling.html //Scene Label

RNN and LSTM

Published: 09 Oct 2015  Category: deep_learning

Types of RNN

1) Plain Tanh Recurrent Nerual Networks

2) Gated Recurrent Neural Networks (GRU)

3) Long Short-Term Memory (LSTM)

Tutorials

A Beginner’s Guide to Recurrent Networks and LSTMs

http://deeplearning4j.org/lstm.html

A Deep Dive into Recurrent Neural Nets

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

Long Short-Term Memory: Tutorial on LSTM Recurrent Networks

http://people.idsia.ch/~juergen/lstm/index.htm

LSTM implementation explained

http://apaszke.github.io/lstm-explained.html

Recurrent Neural Networks Tutorial

Understanding LSTM Networks

Recurrent Neural Networks in DL4J

http://deeplearning4j.org/usingrnns.html

Train RNN

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

Sequence Level Training with Recurrent Neural Networks

Papers

Generating Sequences With Recurrent Neural Networks

DRAW: A Recurrent Neural Network For Image Generation

Unsupervised Learning of Video Representations using LSTMs(ICML2015)

LSTM: A Search Space Odyssey

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

A Critical Review of Recurrent Neural Networks for Sequence Learning

Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks(Winner of MSCOCO image
captioning challenge, 2015)

Visualizing and
Understanding Recurrent Networks(Andrej Karpathy, Justin Johnson, Fei-Fei Li)

Grid Long Short-Term
Memory

Depth-Gated LSTM

Deep Knowledge Tracing

Top-down Tree Long
Short-Term Memory Networks

Alternative structures
for character-level RNNs(INRIA & Facebook AI Research)

Pixel Recurrent Neural
Networks (Google DeepMind)

Long Short-Term
Memory-Networks for Machine Reading

Lipreading with Long
Short-Term Memory

Associative Long
Short-Term Memory

Representation of
linguistic form and function in recurrent neural networks

Architectural
Complexity Measures of Recurrent Neural Networks

Easy-First Dependency
Parsing with Hierarchical Tree LSTMs

Training Input-Output
Recurrent Neural Networks through Spectral Methods

Learn To Execute Programs

Learning to Execute

Neural
Programmer-Interpreters (Google DeepMind)

A
Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive
Control

Convolutional RNN: an
Enhanced Model for Extracting Features from Sequential Data

Attention Models

Recurrent Models of
Visual Attention
 (Google
DeepMind. NIPS2014)

Recurrent Model of
Visual Attention(Google DeepMind)

Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention

A Neural Attention
Model for Abstractive Sentence Summarization(EMNLP 2015. Facebook AI Research)

Effective Approaches
to Attention-based Neural Machine Translation(EMNLP2015)

Generating Images from
Captions with Attention

Attention and Memory
in Deep Learning and NLP

Survey on the
attention based RNN model and its applications in computer vision

Train RNN

Training Recurrent
Neural Networks (PhD thesis)

Deep learning for
control using augmented Hessian-free optimization


Hierarchical Conflict
Propagation: Sequence Learning in a Recurrent Deep Neural Network

Recurrent Batch
Normalization

Optimizing Performance
of Recurrent Neural Networks on GPUs

Codes

NeuralTalk
(Deprecated): a Python+numpy project for learning Multimodal Recurrent Neural
Networks that describe images with sentences

NeuralTalk2: Efficient
Image Captioning code in Torch, runs on GPU

char-rnn in Blocks

Project:
pycaffe-recurrent

Using neural networks
for password cracking

Recurrent neural
networks for decoding CAPTCHAS

torch-rnn: Efficient,
reusable RNNs and LSTMs for torch

Deploying a model
trained with GPU in Torch into JavaScript, for everyone to use

LSTM implementation on
Caffe

Blog

Survey on
Attention-based Models Applied in NLP

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-1.html

Survey on Advanced
Attention-based Models

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-2.html

Online Representation
Learning in Recurrent Neural Language Models

http://www.marekrei.com/blog/online-representation-learning-in-recurrent-neural-language-models/

Fun with Recurrent
Neural Nets: One More Dive into CNTK and TensorFlow

http://esciencegroup.com/2016/03/04/fun-with-recurrent-neural-nets-one-more-dive-into-cntk-and-tensorflow/

Materials to
understand LSTM

https://medium.com/@shiyan/materials-to-understand-lstm-34387d6454c1#.4mt3bzoau

Understanding LSTM and
its diagrams (
★★★★★)

Persistent RNNs: 30
times faster RNN layers at small mini-batch sizes (Greg Diamos, Baidu Silicon
Valley AI Lab)

http://svail.github.io/persistent_rnns/

All of Recurrent
Neural Networks

https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e#.q4s02elqg

Resources

Awesome Recurrent
Neural Networks - A curated list of resources dedicated to RNN

Jürgen Schmidhuber’s
page on Recurrent Neural Networks

http://people.idsia.ch/~juergen/rnn.html

Reading and
Questions

Are there any
Recurrent convolutional neural network network implementations out there ?

« Reinforcement LearningSaliency Prediction »

Saliency Prediction

 Published: 09 Oct 2015  Category: deep_learning

This task involves predicting the salient regions of an image given by human eye fixations.

Large-scale optimization of hierarchical features for saliency prediction in natural images

Predicting Eye Fixations using Convolutional Neural Networks

DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Shallow and Deep Convolutional Networks for Saliency Prediction

Scene Labeling

 Published: 09 Oct 2015  Category: deep_learning

Papers

Learning hierarchical features for scene labeling

  • intro: “Their approach comprised of densely computing multi-scale CNN features for each pixel and aggregating them over image regions upon which they are classified. However, their methodstill required the post-processing step of generating over-segmented regions, like superpixels, for obtaining the final segmentation result. Additionally, the CNNs used for multi-scale feature learning were not very deep with only three convolution layers.”
  • paper: http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf

Indoor Semantic Segmentation using depth information

Multi-modal unsupervised feature learning for rgb-d scene labeling

Using neon for Scene Recognition: Mini-Places2

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Challenges

Large-scale Scene Understanding Challenge

RNN and LSTM saliency Predection Scene Label的更多相关文章

  1. RNN和LSTM

    一.RNN 全称为Recurrent Neural Network,意为循环神经网络,用于处理序列数据. 序列数据是指在不同时间点上收集到的数据,反映了某一事物.现象等随时间的变化状态或程度.即数据之 ...

  2. RNN、LSTM、Seq2Seq、Attention、Teacher forcing、Skip thought模型总结

    RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b) ...

  3. RNN 与 LSTM 的应用

    之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural N ...

  4. Naive RNN vs LSTM vs GRU

    0 Recurrent Neural Network 1 Naive RNN 2 LSTM peephole Naive RNN vs LSTM 记忆更新部分的操作,Naive RNN为乘法,LSTM ...

  5. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  6. 浅谈RNN、LSTM + Kreas实现及应用

    本文主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学 ...

  7. 3. RNN神经网络-LSTM模型结构

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 之前我们对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数 ...

  8. RNN以及LSTM的介绍和公式梳理

    前言 好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RN ...

  9. 深度学习:浅谈RNN、LSTM+Kreas实现与应用

    主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...

随机推荐

  1. FileUploadInterceptor拦截器的笔记

    当请求表单中包含一个文件file,FileUploadInterception拦截器会自动应用于这个文件. 表单: <s:form namespace="/xxx" acti ...

  2. (转)JPEG图片数据结构分析- 附Png数据格式详解.doc

       一.简述 JPEG是一个压缩标准,又可分为标准JPEG.渐进式JPEG及JPEG2000三种: ①标准JPEG:以24位颜色存储单个光栅图像,是与平台无关的格式,支持最高级别的压缩,不过,这种压 ...

  3. 解决:新版火狐浏览器3d打不开

    重启:按 Ctrl + Shift + L 键唤出 3d 视图 参考文档:http://tieba.baidu.com/p/4606488108

  4. Linux下如何修改ip地址

    在Linux的系统下如何才能修改IP信息 以前总是用ifconfig修改,重启后总是得重做.如果修改配置文件,就不用那么麻烦了- A.修改ip地址 即时生效: # ifconfig eth0 192. ...

  5. javascript URI的编码

    用encodeURIComponent,但是不清楚她和encodeURI的区别, w3school 对其的解释: encodeURIComponent() 函数可把字符串作为 URI 组件进行编码.( ...

  6. EXT学习之——获取下拉框combobox的值与显示名

    //申请科室 var comboboxdept = new Ext.form.ComboBox({ xtype: "combobox", name: "Gender&qu ...

  7. 关于页面 reflow 和 repaint

    什么是 reflow 和 repaint 浏览器为了重新渲染部分或整个页面,重新计算页面元素位置和几何结构(geometries)的进程叫做 reflow. 当确定了元素位置.大小以及其他属性,例如颜 ...

  8. WebStorage 和 Cookie的区别

    sessionStorage 和 localStorage 是HTML5 Web Storage API 提供的,可以方便的在web请求之间保存数据.有了本地数据,就可以避免数据在浏览器和服务器间不必 ...

  9. 自定义UITableViewCell

    随着日常的使用,系统提供的cell已经不能满足开发的需要,因为系统提供的是单一的,所以 这就引来了自定义cell的出现,可以根据 自己的需要来布局各个控件所处的位置.不同位置显示不同的控件. 创建一个 ...

  10. Flume NG简介及配置

    Flume下载地址:http://apache.fayea.com/flume/ 常用的分布式日志收集系统: Apache Flume. Facebook Scribe. Apache Chukwa ...