http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html  //RNN and LSTM

http://handong1587.github.io/deep_learning/2015/10/09/saliency-prediction.html //saliency Predection

http://handong1587.github.io/deep_learning/2015/10/09/scene-labeling.html //Scene Label

RNN and LSTM

Published: 09 Oct 2015  Category: deep_learning

Types of RNN

1) Plain Tanh Recurrent Nerual Networks

2) Gated Recurrent Neural Networks (GRU)

3) Long Short-Term Memory (LSTM)

Tutorials

A Beginner’s Guide to Recurrent Networks and LSTMs

http://deeplearning4j.org/lstm.html

A Deep Dive into Recurrent Neural Nets

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

Long Short-Term Memory: Tutorial on LSTM Recurrent Networks

http://people.idsia.ch/~juergen/lstm/index.htm

LSTM implementation explained

http://apaszke.github.io/lstm-explained.html

Recurrent Neural Networks Tutorial

Understanding LSTM Networks

Recurrent Neural Networks in DL4J

http://deeplearning4j.org/usingrnns.html

Train RNN

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

Sequence Level Training with Recurrent Neural Networks

Papers

Generating Sequences With Recurrent Neural Networks

DRAW: A Recurrent Neural Network For Image Generation

Unsupervised Learning of Video Representations using LSTMs(ICML2015)

LSTM: A Search Space Odyssey

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

A Critical Review of Recurrent Neural Networks for Sequence Learning

Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks(Winner of MSCOCO image
captioning challenge, 2015)

Visualizing and
Understanding Recurrent Networks(Andrej Karpathy, Justin Johnson, Fei-Fei Li)

Grid Long Short-Term
Memory

Depth-Gated LSTM

Deep Knowledge Tracing

Top-down Tree Long
Short-Term Memory Networks

Alternative structures
for character-level RNNs(INRIA & Facebook AI Research)

Pixel Recurrent Neural
Networks (Google DeepMind)

Long Short-Term
Memory-Networks for Machine Reading

Lipreading with Long
Short-Term Memory

Associative Long
Short-Term Memory

Representation of
linguistic form and function in recurrent neural networks

Architectural
Complexity Measures of Recurrent Neural Networks

Easy-First Dependency
Parsing with Hierarchical Tree LSTMs

Training Input-Output
Recurrent Neural Networks through Spectral Methods

Learn To Execute Programs

Learning to Execute

Neural
Programmer-Interpreters (Google DeepMind)

A
Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive
Control

Convolutional RNN: an
Enhanced Model for Extracting Features from Sequential Data

Attention Models

Recurrent Models of
Visual Attention
 (Google
DeepMind. NIPS2014)

Recurrent Model of
Visual Attention(Google DeepMind)

Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention

A Neural Attention
Model for Abstractive Sentence Summarization(EMNLP 2015. Facebook AI Research)

Effective Approaches
to Attention-based Neural Machine Translation(EMNLP2015)

Generating Images from
Captions with Attention

Attention and Memory
in Deep Learning and NLP

Survey on the
attention based RNN model and its applications in computer vision

Train RNN

Training Recurrent
Neural Networks (PhD thesis)

Deep learning for
control using augmented Hessian-free optimization


Hierarchical Conflict
Propagation: Sequence Learning in a Recurrent Deep Neural Network

Recurrent Batch
Normalization

Optimizing Performance
of Recurrent Neural Networks on GPUs

Codes

NeuralTalk
(Deprecated): a Python+numpy project for learning Multimodal Recurrent Neural
Networks that describe images with sentences

NeuralTalk2: Efficient
Image Captioning code in Torch, runs on GPU

char-rnn in Blocks

Project:
pycaffe-recurrent

Using neural networks
for password cracking

Recurrent neural
networks for decoding CAPTCHAS

torch-rnn: Efficient,
reusable RNNs and LSTMs for torch

Deploying a model
trained with GPU in Torch into JavaScript, for everyone to use

LSTM implementation on
Caffe

Blog

Survey on
Attention-based Models Applied in NLP

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-1.html

Survey on Advanced
Attention-based Models

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-2.html

Online Representation
Learning in Recurrent Neural Language Models

http://www.marekrei.com/blog/online-representation-learning-in-recurrent-neural-language-models/

Fun with Recurrent
Neural Nets: One More Dive into CNTK and TensorFlow

http://esciencegroup.com/2016/03/04/fun-with-recurrent-neural-nets-one-more-dive-into-cntk-and-tensorflow/

Materials to
understand LSTM

https://medium.com/@shiyan/materials-to-understand-lstm-34387d6454c1#.4mt3bzoau

Understanding LSTM and
its diagrams (
★★★★★)

Persistent RNNs: 30
times faster RNN layers at small mini-batch sizes (Greg Diamos, Baidu Silicon
Valley AI Lab)

http://svail.github.io/persistent_rnns/

All of Recurrent
Neural Networks

https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e#.q4s02elqg

Resources

Awesome Recurrent
Neural Networks - A curated list of resources dedicated to RNN

Jürgen Schmidhuber’s
page on Recurrent Neural Networks

http://people.idsia.ch/~juergen/rnn.html

Reading and
Questions

Are there any
Recurrent convolutional neural network network implementations out there ?

« Reinforcement LearningSaliency Prediction »

Saliency Prediction

 Published: 09 Oct 2015  Category: deep_learning

This task involves predicting the salient regions of an image given by human eye fixations.

Large-scale optimization of hierarchical features for saliency prediction in natural images

Predicting Eye Fixations using Convolutional Neural Networks

DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Shallow and Deep Convolutional Networks for Saliency Prediction

Scene Labeling

 Published: 09 Oct 2015  Category: deep_learning

Papers

Learning hierarchical features for scene labeling

  • intro: “Their approach comprised of densely computing multi-scale CNN features for each pixel and aggregating them over image regions upon which they are classified. However, their methodstill required the post-processing step of generating over-segmented regions, like superpixels, for obtaining the final segmentation result. Additionally, the CNNs used for multi-scale feature learning were not very deep with only three convolution layers.”
  • paper: http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf

Indoor Semantic Segmentation using depth information

Multi-modal unsupervised feature learning for rgb-d scene labeling

Using neon for Scene Recognition: Mini-Places2

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Challenges

Large-scale Scene Understanding Challenge

RNN and LSTM saliency Predection Scene Label的更多相关文章

  1. RNN和LSTM

    一.RNN 全称为Recurrent Neural Network,意为循环神经网络,用于处理序列数据. 序列数据是指在不同时间点上收集到的数据,反映了某一事物.现象等随时间的变化状态或程度.即数据之 ...

  2. RNN、LSTM、Seq2Seq、Attention、Teacher forcing、Skip thought模型总结

    RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b) ...

  3. RNN 与 LSTM 的应用

    之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural N ...

  4. Naive RNN vs LSTM vs GRU

    0 Recurrent Neural Network 1 Naive RNN 2 LSTM peephole Naive RNN vs LSTM 记忆更新部分的操作,Naive RNN为乘法,LSTM ...

  5. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  6. 浅谈RNN、LSTM + Kreas实现及应用

    本文主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学 ...

  7. 3. RNN神经网络-LSTM模型结构

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 之前我们对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数 ...

  8. RNN以及LSTM的介绍和公式梳理

    前言 好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RN ...

  9. 深度学习:浅谈RNN、LSTM+Kreas实现与应用

    主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...

随机推荐

  1. MyBatis无法根据中文条件查询出结果

    情况是这样的 , 以英文做参数可以查询到结果 , 以中文做参数则查询不到结果 在mysql workbench中执行sql , 可以查询到结果. 这是mybatis中没有指定utf-8的缘故导致的. ...

  2. 每天一个 Linux 命令(8):cp 命令

    cp命令用来复制文件或者目录,是Linux系统中最常用的命令之一.一般情下,shell会设置一个别名,在命令行下复制文件时,如果目标文件已经存在,就会询问是否覆盖,不管你是否使用-i参数.但是如果是在 ...

  3. VBA_Excel_教程:分枝循环结构

    Sub 分枝() tmp = Cells(, ).Value '变量不用定义,当前写代码的Sheet Debug.Print tmp " Then Debug.Print "A&q ...

  4. node js 调试

    npm install -g node-inspector node --debug app.js >重新打开一个窗口   node-inspector &   KO!       no ...

  5. Python函数中的参数(一)

    函数传递参数时的简要关键点: 1.参数的传递是通过自动将对象赋值给本地变量名来实现的.函数参数在实际中只是Python赋值的一个实例.因为引用是以指针的形式实现的,所有的参数实际上都是通过指针进行传递 ...

  6. maven仓库有jar包,还是找不到类

    开始,网上的所有方法都没用. 我用的eclipse-32位的,jdk也是.然后今天换了个sts和jdk.64位的.然后就没有那个问题了.

  7. 【浅析】IMU代码

    IMU的代码的引自https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/imumargalgo ...

  8. JSON中的日期格式化

    Json字符串中的日期格式化函数 ConvertJsonDate: function (jd) { var d = new Date(parseInt(jd.replace("/Date(& ...

  9. jquery 删除数组元素

    expertsId.splice($.inArray(thisID.split('&')[0],expertsId),1); 1. expertsId数组名2. thisID.split('& ...

  10. Kernel Logestic Regression

    一.把 soft margin svm 看做 L2 Regression 模型 先来一张图回顾一下之前都学了些什么: 之前我们是通过拉格朗日乘子法来进行soft Margin Svm的转化问题,现在换 ...