BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
我也不知道为什么,常数卡了半天。。。
也不知是不是没有卡LL和int的常数。。。
反正后面卡过去了。。。
下面说正事。。。


#include<bits/stdc++.h>
using namespace std;
#define N 10000010
#define Mod 20101009
int n,m,ans=0,tot=0;
bool mark[N];
int pri[N],F[N],S[N];
void init(){
F[1]=1;
for(int i=2;i<=n;i++){
if(!mark[i])pri[++tot]=i,F[i]=1-i;
for(int j=1;j<=tot&&i*pri[j]<=n;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0)F[i*pri[j]]=F[i];
else F[i*pri[j]]=1ll*F[i]*F[pri[j]]%Mod;
}
}
for(int i=1;i<=n;i++)F[i]=(1ll*F[i]*i%Mod+F[i-1])%Mod;
for(int i=1;i<=m;i++)S[i]=(1ll*(i+1)*i/2)%Mod;
}
int main(){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
init();
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(F[j]-F[i-1]+Mod)*S[n/i]%Mod*S[m/i]%Mod+Mod)%Mod;
}
printf("%d",(ans+Mod)%Mod);
return 0;
}
BZOJ2154 Crash的数字表格 【莫比乌斯反演】的更多相关文章
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
随机推荐
- u-boot-2015.07 autoconf.mk生成过程分析
1.u-boot2015.7版本编译没有在顶层目录中生成.config文件,而生成了include/autoconf.mk和include/autoconf.mk.dep两个文件,并在每个模块编译的时 ...
- webpack入门配置
webpack入门配置 根据该篇文章进行配置: 入门 Webpack,看这篇就够了 其中由于版本更新的问题会出现几个问题: 1.Would you like to install webpack-cl ...
- PHP对象的使用,什么时候可以用中括号[], 什么时候可以用箭头->
$orderTPLMessage = (object)array( 'touser' => '这里填open id', 'template_id' => 'oQDOldy7q6CdaYw2 ...
- jQuery中兄弟元素、子元素和父元素的获取
我们这里主要总结jQuery中对某元素的兄弟元素.子元素和父元素的获取,原声的Javascript代码对这些元素的获取比较麻烦一些,而jQuery正好对这些方法进行封装,让我们更加方便的对这些元素进行 ...
- Java新建线程的3种方法
Java新建线程的3种方法 =================== Java创建线程有3种方法:(1)继承Thread;(2)实现Runnable接口:(3)实现Callable接口; 由于Java只 ...
- ffmpeg播放RTSP的一点优化
简单记录一下最近使用ffmpeg播放RTSP做的一点参数优化. 先做如下定义: AVDictionary* options = NULL; 1.画质优化 原生的ffmpeg参数在对1920x1080的 ...
- Java环境搭建---(基础)
首先下载eclipse开发工具,下载地址:http://www.eclipse.org/downloads/,界面如下: 选择eclipse juno(4.2)的版本进入界面 点击Downloads, ...
- js 滚到页面顶部
一.滚到顶部,且滚动中,用户滚动鼠标无效 <style> .div1, .div2, .div3, .div4 { height: 400px; width: 400px; } .div1 ...
- 过滤器(Filter)
1 什么是过滤器 过滤器JavaWeb三大组件之一,它与Servlet很相似!不它过滤器是用来拦截请求的,而不是处理请求的. 当用户请求某个Servlet时,会先执行部署在这个请求上的Filter,如 ...
- 将VS2010环境设置为VC6.0样式(字体、前景色、背景色、Visual Assist X等)
一.设置字体. 使用字体:Fixedsys Excelsior 3.01. 步骤1:下载字体. 步骤2:安装字体,控制面板->字体,复制下载的字体进去. 步骤3:打开VS2010,选择菜单:To ...
