核主成分分析(Kernel Principal Component Analysis, KPCA)的公式推导过程
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实验,PCA能够达到的识别率只有88%,而同样是无监督学习的KPCA算法,能够轻松的达到93%左右的识别率(虽然这二者的主要目的是降维,而不是分类,但也可以用于分类),这其中很大一部分原因是,KPCA能够挖掘到数据集中蕴含的非线性信息。
1. 理论部分
KPCA的公式推导和PCA十分相似,只是存在两点创新:
1. 为了更好地处理非线性数据,引入非线性映射函数,将原空间中的数据映射到高维空间,注意,这个
是隐性的,我们不知道,也不需要知道它的具体形式是啥。
2. 引入了一个定理:空间中的任一向量(哪怕是基向量),都可以由该空间中的所有样本线性表示,这点对KPCA很重要,我想大概当时那个大牛想出KPCA的时候,这点就是它最大的灵感吧。话说这和”稀疏“的思想比较像。
假设中心化后的样本集合X(d*N,N个样本,维数d维,样本”按列排列“),现将X映射到高维空间,得到,假设在这个高维空间中,本来在原空间中线性不可分的样本现在线性可分了,然后呢?想啥呢!果断上PCA啊!~
于是乎!假设D(D >> d)维向量为高维空间中的特征向量,
为对应的特征值,高维空间中的PCA如下:
(1)
和PCA太像了吧?这个时候,在利用刚才的定理,将特征向量利用样本集合
线性表示,如下:
(2)
然后,在把代入上上公式,得到如下的形式:
(3)
进一步,等式两边同时左乘,得到如下公式:
(4)
你可能会问,这个有啥用?
这样做的目的是,构造两个出来,进一步用核矩阵K(为对称矩阵)替代,其中:
(5)
第二个等号,是源于核函数的性质,核函数比较多,有如下几种:
于是,公式进一步变为如下形式:
(6)
两边同时去除K,得到了PCA相似度极高的求解公式:
(7)
求解公式的含义就是求K最大的几个特征值所对应的特征向量,由于K为对称矩阵,所得的解向量彼此之间肯定是正交的。
但是,请注意,这里的只是K的特征向量,但是其不是高维空间中的特征向量,回看公式(2),高维空间中的特征向量w应该是由
进一步求出。
这时有的朋友可能会问,这个时候,如果给定一个测试样本,应该如何降维,如何测试?
是这样的,既然我们可以得到高维空间的一组基,这组基可以构成高维空间的一个子空间,我们的目的就是得到测试样本
在这个子空间中的线性表示,也就是降维之后的向量。具体如下:
(8)
于是呼~就可以对降维了,然后就做你想要做的事情。。。。
2. 实验部分
做了一些仿真实验,分别比较了PCA与KPCA之间的效果,KPCA基于不同核函数的效果,二者对于原始数据的要求,以及效果随着参数变化的规律。
1)下面展示的是“无重叠的”非线性可分数据下,PCA与KPCA(基于高斯核)的区别,注意,原始数据是二维数据,投影之后也是二维数据
2)下面展示的是“部分重叠的”非线性可分数据下,PCA与KPCA的区别
3)下面展示的是“无高斯扰动的”非线性可分数据下,PCA与KPCA的区别
4)下面展示的是上述三类数据下,基于多项式核函数的KPCA效果
5)下面展示的是在“部分重叠的”非线性可分数据下,基于多项式核函数的KPCA在不同多项式参数下的效果图
3. 实验结论
4. 代码
5. 总结
转自:http://blog.csdn.NET/wsj998689aa/article/details/40398777 作者:迷雾forest
核主成分分析(Kernel Principal Component Analysis, KPCA)的公式推导过程的更多相关文章
- 解释一下核主成分分析(Kernel Principal Component Analysis, KPCA)的公式推导过程(转载)
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实 ...
- Jordan Lecture Note-10: Kernel Principal Components Analysis (KPCA).
Kernel Principal Components Analysis PCA实际上就是对原坐标进行正交变换,使得变换后的坐标之间相互无关,并且尽可能保留多的信息.但PCA所做的是线性变换,对于某些 ...
- R: 主成分分析 ~ PCA(Principal Component Analysis)
本文摘自:http://www.cnblogs.com/longzhongren/p/4300593.html 以表感谢. 综述: 主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据 ...
- PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...
- (4)主成分分析Principal Component Analysis——PCA
主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
- 主成分分析(principal components analysis, PCA)——无监督学习
降维的两种方式: (1)特征选择(feature selection),通过变量选择来缩减维数. (2)特征提取(feature extraction),通过线性或非线性变换(投影)来生成缩减集(复合 ...
- Robust Principal Component Analysis?(PCP)
目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
随机推荐
- hexo部署Github博客
例子:https://aquarius1993.github.io/blog/ 仓库:https://github.com/Aquarius1993/blog (前提是已经安装Xcode和git) 1 ...
- 读文件名,shell
参考文献:(忘了哪个笔记了)http://www.docin.com/p-871820919.html
- "PEP:8 expected 2 blank lines ,found 1"
pycharm shows "PEP:8 expected 2 blank lines ,found 1" 用pycharm写python的时候,总会在def function() ...
- js工具类的封装
common.js原生js实现的大多工具方法都将放在common文件中 布局rem.js,vue开发时,我们只需要将rem.js再main.js中import 引入即可 (function(win, ...
- 在IIS上搭建FTP站点
操作环境 系统:win7 IIS版本:7.5 FTP传输工具:FlashXP 概述 本文介绍了如何在win7下利用IIS(默认已安装IIS和FTP功能)搭建FTP站点,FTP站点的常用配置. 快速搭建 ...
- python对文件的读写
文件 File 什么是文件 文件是用于数据存储和单位 文件通常用来长期存储数据 文件中的数据是以字节为单位进行顺序存储的 文件的操作流程: 1. 打开文件 2. 读/写文件 3. 关闭文件 注: 任何 ...
- 项目文件中的已知 NuGet 属性(使用这些属性,创建 NuGet 包就可以不需要 nuspec 文件啦)
知道了 csproj 文件中的一些常用 NuGet 属性,创建 NuGet 包时就可以充分发挥新 Sdk 自动生成 NuGet 包的优势,不需要 nuspec 文件啦.(毕竟 nuspec 文件没有 ...
- Java 自定义FTP连接池
转自:https://blog.csdn.net/eakom/article/details/79038590 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn ...
- dockerize 容器工具集基本使用
基本功能: * 在启动的时候根据环境变量或者模版生成配置文锦啊 * 多日志文件重定向到标准输入输出 * 等待其他服务(tcp,http unix)起来之后在启动主进程 1. 安装 直 ...
- Attribute的妙用 ---- 拦截器(过滤器)
一.何为Attribute 下面是微软官方对Attribute的解释: 公共语言运行时允许你添加类似关键字的描述声明,叫做Attributes,它对程序中的元素进行标注,如类型.字段.方法和属性等.A ...