Python笔记-进程Process、线程Thread、上锁
1、对于操作系统来说,一个任务就是一个进程(Process)。比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程。
2、在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。比如Word,它可以同时进行打字、拼写检查、打印等事情。
3、线程是最小的执行单元,而进程由至少一个线程组成。
多进程
1、Unix/Linux:fork()调用实现多进程。
2、Windows没有fork(),multiprocessing模块就是跨平台版本的多进程模块。multiprocessing模块提供了一个Process类来代表一个进程对象。
#启动一个子进程并等待其结束:
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print('Run child process %s (%s)...' % (name, os.getpid()))
#主函数
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
#创建子进程时,只需要传入一个执行函数和函数的参数,
#创建一个Process实例,用start()方法启动。
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
p.start()
#join()可等待子进程结束后再继续往下运行,通常用于进程间的同步。
p.join()
print('Child process end.')
结果:
Parent process 928.
Process will start.
Run child process test (929)...
Process end.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
进程间通信
1、Process之间肯定是需要通信的,Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。
以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get(True)
print('Get %s from queue.' % value)
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()
结果:
Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
多线程
1、Python的标准库提供了两个模块:_thread(低级模块)和threading(高级模块,对_thread进行了封装)。绝大多数情况下,我们只需要使用threading这个高级模块。
2、启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:
import time, threading
# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
n = 0
while n < 5:
n = n + 1
print('thread %s >>> %s' %(threading.current_thread().name, n))
time.sleep(1)
print('thread %s ended.' % threading.current_thread().name)
print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s ended.' % threading.current_thread().name)
结果:
thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
由于任何进程默认就会启动一个线程(主线程),主线程又可以启动新的线程,current_thread()永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……
3、
多进程:同一个变量,各自有一份拷贝存在于每个进程中,互不影响。
多线程:所有变量都由所有线程共享。所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。
#来看看多个线程同时操作一个变量怎么把内容给改乱了
import time, threading
# 假定这是你的银行存款:
balance = 0
def change_it(n):
# 先存后取,结果应该为0:
global balance
balance = balance + n
balance = balance - n
def run_thread(n):
for i in range(100000):
change_it(n)
t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print(balance)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
balance,理论上结果应该为0,但是,由于线程的调度是由OS决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。
原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:
balance = balance + n
- 1
也分两步:
计算balance + n,存入临时变量中;
将临时变量的值赋给balance。
也就是可以看成:
x = balance + n
balance = x
- 1
- 2
由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:
#初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0
t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2 # balance = 0
#结果 balance = 0
#但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:
#初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0
t2: x2 = balance - 8 # x2 = 0 - 8 = -8
t2: balance = x2 # balance = -8
#结果
balance = -8
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。
我们必须确保一个线程在修改balance的时候,别的线程一定不能改。
4、如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。
创建一个锁就是通过threading.Lock()来实现:
balance = 0
lock = threading.Lock()
def run_thread(n):
for i in range(100000):
# 先要获取锁:
lock.acquire()
try:
# 放心地改吧:
change_it(n)
finally:
# 改完了一定要释放锁:
lock.release()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。
5、获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try…finally来确保锁一定会被释放。
6、多进程模式:稳定性高(一个子进程崩溃了,不会影响主进程和其他子进程,当然主进程挂了所有进程就全挂了),但是创建进程的代价大,另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
7、多线程模式:比多进程快一点,但是也快不到哪去,而且,任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。
Python笔记-进程Process、线程Thread、上锁的更多相关文章
- Python创建进程、线程的两种方式
代码创建进程和线程的两种方式 """ 定心丸:Python创建进程和线程的方式基本都是一致的,包括其中的调用方法等,学会一个 另一个自然也就会了. "" ...
- JUC学习笔记——进程与线程
JUC学习笔记--进程与线程 在本系列内容中我们会对JUC做一个系统的学习,本片将会介绍JUC的进程与线程部分 我们会分为以下几部分进行介绍: 进程与线程 并发与并行 同步与异步 线程详解 进程与线程 ...
- Python的进程与线程--思维导图
Python的进程与线程--思维导图
- 《C#并发编程经典实例》学习笔记-进程(process)和线程(thread)
本文主要参考自孙钟秀主编的<操作系统教程>一书中关于进程和线程的部分. 进程 为什么引入进程? 一,刻画系统动态性,发挥系统并发性,提高资源利用率. 以C#为例,在编辑器Visual St ...
- Python自学笔记-进程,线程(Mr serven)
对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了 ...
- python之进程与线程
什么是操作系统 可能很多人都会说,我们平时装的windows7 windows10都是操作系统,没错,他们都是操作系统.还有没有其他的? 想想我们使用的手机,Google公司的Androi ...
- 【Python】进程和线程
多进程 多线程 ThreadLocal 进程vs线程 分布式进程 Top 学习廖老师的py官网的笔记 多任务的实现方式有三种方式: 1.多进程 2.多线程 3.多进程+多线程(这种比较复杂,实际很少采 ...
- Python 9 进程,线程
本节内容 python GIL全局解释器锁 线程 进程 Python GIL(Global Interpreter Lock) In CPython, the global interpreter l ...
- 《Python》进程收尾线程初识
一.数据共享 from multiprocessing import Manager 把所有实现了数据共享的比较便捷的类都重新又封装了一遍,并且在原有的multiprocessing基础上增加了新的机 ...
随机推荐
- 搜索引擎根据原Sphider的脚本修正后的 Sphider-plus 2.2
搜索引擎根据原Sphider的脚本修正后的 Sphider-plus 2.2 标签: 搜索引擎脚本search数据库authorizationjavascript -- : 1412人阅读 评论() ...
- eclipse 安装maven
在使用eclipse自带插件的方式安装 http://download.eclipse.org/technology/m2e/releases/ 点击help-->install new sof ...
- Ubuntu 文件文件夹查看权限和设置权限
ubuntu下查看权限的命令为: ls -l filename ls -ld folder ubuntu下设置权限的命令为: 一共有10位数 其中: 最前面那个 - 代表的是类型 中间那三个 rw- ...
- Bootstrap学习笔记(2)--栅格系统深入学习
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- shell监控脚本,不考虑多用户情况
#!/bin/bash CheckProcess() { if [ "$1" = "" ]; then fi PROCESS_NUM=`ps -ef | gre ...
- [shell]C语言调用shell脚本接口
Use popen if you want to run a shell command and want the parent process to be able to talk to the c ...
- zombie处理
僵尸进程处理 程序处理(预处理) 父进程wait/waitpid. signal(SIGCHLD, SIG_IGN); 捕捉SIGCHLD,signal(SIGCHLD, handler);可获取子进 ...
- ssh2——Interceptor拦截器
尽管没学过struts1吧.可是了解到struts1中并没有拦截器, 到Struts2才有.它是基于WebWork发展起来的, 顾名思义,说到拦截器大家首先肯定会想到它是拦截东西的,起到一个限制的作 ...
- 回文树(统计所有回文串的个数) - MCCME 1750 Подпалиндромы
Подпалиндромы Problem's Link: http://informatics.mccme.ru//mod/statements/view.php?chapterid=1750# M ...
- ChemDraw使用不了怎么办
ChemDraw作为一款专业级的化学绘图软件,不仅可以帮助用户绘制图像在数据计算方面也起了很大作用,因此,ChemDraw非常受用户的欢迎.但是我们在使用过程中难免会遇到各种问题,特别是对于新手用户, ...