1、对于操作系统来说,一个任务就是一个进程(Process)。比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程。

2、在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。比如Word,它可以同时进行打字、拼写检查、打印等事情。

3、线程是最小的执行单元,而进程由至少一个线程组成。

多进程

1、Unix/Linux:fork()调用实现多进程。

2、Windows没有fork(),multiprocessing模块就是跨平台版本的多进程模块。multiprocessing模块提供了一个Process类来代表一个进程对象。

#启动一个子进程并等待其结束:
from multiprocessing import Process
import os # 子进程要执行的代码
def run_proc(name):
print('Run child process %s (%s)...' % (name, os.getpid())) #主函数
if __name__=='__main__':
print('Parent process %s.' % os.getpid()) #创建子进程时,只需要传入一个执行函数和函数的参数,
#创建一个Process实例,用start()方法启动。
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
p.start() #join()可等待子进程结束后再继续往下运行,通常用于进程间的同步。
p.join()
print('Child process end.') 结果:
Parent process 928.
Process will start.
Run child process test (929)...
Process end.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

进程间通信

1、Process之间肯定是需要通信的,Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。

以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random # 写数据进程执行的代码:
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random()) # 读数据进程执行的代码:
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get(True)
print('Get %s from queue.' % value) if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate() 结果:
Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

多线程

1、Python的标准库提供了两个模块:_thread(低级模块)和threading(高级模块,对_thread进行了封装)。绝大多数情况下,我们只需要使用threading这个高级模块。

2、启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:

import time, threading

# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
n = 0
while n < 5:
n = n + 1
print('thread %s >>> %s' %(threading.current_thread().name, n))
time.sleep(1)
print('thread %s ended.' % threading.current_thread().name) print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s ended.' % threading.current_thread().name) 结果:
thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

由于任何进程默认就会启动一个线程(主线程),主线程又可以启动新的线程,current_thread()永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……

3、
多进程:同一个变量,各自有一份拷贝存在于每个进程中,互不影响。
多线程:所有变量都由所有线程共享。所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

#来看看多个线程同时操作一个变量怎么把内容给改乱了
import time, threading # 假定这是你的银行存款:
balance = 0 def change_it(n):
# 先存后取,结果应该为0:
global balance
balance = balance + n
balance = balance - n def run_thread(n):
for i in range(100000):
change_it(n) t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print(balance)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

balance,理论上结果应该为0,但是,由于线程的调度是由OS决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。

原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:

balance = balance + n
  • 1

也分两步:

计算balance + n,存入临时变量中;
将临时变量的值赋给balance
也就是可以看成:

x = balance + n
balance = x
  • 1
  • 2

由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:

#初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0 t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2 # balance = 0 #结果 balance = 0 #但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:
#初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5 t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8 t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0 t2: x2 = balance - 8 # x2 = 0 - 8 = -8
t2: balance = x2 # balance = -8 #结果
balance = -8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

我们必须确保一个线程在修改balance的时候,别的线程一定不能改。

4、如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。

创建一个锁就是通过threading.Lock()来实现:

balance = 0
lock = threading.Lock() def run_thread(n):
for i in range(100000):
# 先要获取锁:
lock.acquire()
try:
# 放心地改吧:
change_it(n)
finally:
# 改完了一定要释放锁:
lock.release()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

5、获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try…finally来确保锁一定会被释放。

6、多进程模式:稳定性高(一个子进程崩溃了,不会影响主进程和其他子进程,当然主进程挂了所有进程就全挂了),但是创建进程的代价大,另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。

7、多线程模式:比多进程快一点,但是也快不到哪去,而且,任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。

Python笔记-进程Process、线程Thread、上锁的更多相关文章

  1. Python创建进程、线程的两种方式

    代码创建进程和线程的两种方式 """ 定心丸:Python创建进程和线程的方式基本都是一致的,包括其中的调用方法等,学会一个 另一个自然也就会了. "" ...

  2. JUC学习笔记——进程与线程

    JUC学习笔记--进程与线程 在本系列内容中我们会对JUC做一个系统的学习,本片将会介绍JUC的进程与线程部分 我们会分为以下几部分进行介绍: 进程与线程 并发与并行 同步与异步 线程详解 进程与线程 ...

  3. Python的进程与线程--思维导图

    Python的进程与线程--思维导图

  4. 《C#并发编程经典实例》学习笔记-进程(process)和线程(thread)

    本文主要参考自孙钟秀主编的<操作系统教程>一书中关于进程和线程的部分. 进程 为什么引入进程? 一,刻画系统动态性,发挥系统并发性,提高资源利用率. 以C#为例,在编辑器Visual St ...

  5. Python自学笔记-进程,线程(Mr serven)

    对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了 ...

  6. python之进程与线程

    什么是操作系统       可能很多人都会说,我们平时装的windows7 windows10都是操作系统,没错,他们都是操作系统.还有没有其他的? 想想我们使用的手机,Google公司的Androi ...

  7. 【Python】进程和线程

    多进程 多线程 ThreadLocal 进程vs线程 分布式进程 Top 学习廖老师的py官网的笔记 多任务的实现方式有三种方式: 1.多进程 2.多线程 3.多进程+多线程(这种比较复杂,实际很少采 ...

  8. Python 9 进程,线程

    本节内容 python GIL全局解释器锁 线程 进程 Python GIL(Global Interpreter Lock) In CPython, the global interpreter l ...

  9. 《Python》进程收尾线程初识

    一.数据共享 from multiprocessing import Manager 把所有实现了数据共享的比较便捷的类都重新又封装了一遍,并且在原有的multiprocessing基础上增加了新的机 ...

随机推荐

  1. java学习之实例变量初始化

    实例变量的初始化方法 第一种:通过构造函数进行初始化. 第二种:通过声明实例字段初始化. 第三种:通过对象代码块初始化. 通过构造函数进行初始化方法 通过构造函数进行对象初始化,必须在类中声明一个带参 ...

  2. java读properties文件 乱码

    java读properties文件,包含中文字符的主要有两种: 1.key中包含中文字符的(value中也有可能包含) 2.key中不包含中文字符的(value中有可能包含) 1.key中包含中文字符 ...

  3. Hive及HBase数据迁移

    一. Hive数据迁移 场景:两个Hadoop平台集群之间Hive表迁移. 基本思路:Hive表元数据和文件数据export到HDFS文件,通过Distcp将HDFS迁移到另一个集群的HDFS文件,再 ...

  4. 专题实验 Toad 用户的创建与管理( 包括 role 等 )

    1. 用户登录数据库 是否可以通过操作系统权限来登录数据库, $ORACLE_HOME/network/admin/sqlnet.ora 这个文件中设置, 如果增加参数sqlnet.authentic ...

  5. TMS320C64x DSP L1 L2 Cache架构(1)——C64x Cache Architecture

    [前沿]研究生阶段从事于DSP和FPGA技术的相关研究工作,学习并整理了大量的技术资料,包括TI公司的官方文档和网络上的详细笔记,花费了大量的时间和精力总结了前人的工作成果.无奈工作却从事于嵌入式技术 ...

  6. 用 HTML5+ payment方法支付宝支付遇到的坑

    用 HTML5+ payment方法碰到的第一个坑就是如果是支付宝的话签约那种支付方式. 因为 Dcloud的文档没有更新的原因你可以看到他们说的都是‘移动支付’,但是你去支付宝平台的时候看到的根本就 ...

  7. linux_shell_find命令

    使用find查找文件 基本格式:find path expression 1.按照文件名查找 (1)find / -name httpd.conf #在根目录下查找文件httpd.conf,表示在整个 ...

  8. 深入分析jquery解析json数据

    我们先以解析上例中的comments对象的JSON数据为例,然后再小结jQuery中解析JSON数据的方法. JSON数据如下,是一个嵌套JSON: {"comments":[{& ...

  9. JavaScript的arguements

    ---恢复内容开始--- arguments 对象 在函数代码中,使用特殊对象 arguments,开发者无需明确指出参数名,就能访问它们. 例如,在函数 sayHi() 中,第一个参数是 messa ...

  10. hdu 2686(状压dp)

    题目链接:http://poj.org/problem?id=2686 思路:典型的状压dp题,dp[s][v]表示到达剩下的车票集合为S并且现在在城市v的状态所需要的最小的花费. #include& ...