我的第二道斜率DP。

收获:

  1、假设两个位置:p<q<i,然后让某一位置优,看其满足什么性质,所谓斜率优化就是满足:

    (g[q]-g[p])/(f[q]-f[p])  op h[i]

    要化简成这样,必须满足f函数关于位置单调,否则op(<或>)的方向就会因为f的大小关系而变化,就没有凸的性质了。

  2、斜率优化很难调试,所以当发现暴力DP和同样的方程被斜率优化了一下的答案不同时,不要去调试,直接去检查上面的各个函数是否写错或抄到代码中抄错了,

    或者重推一遍。(注意决策点是否可能会重合)

 /**************************************************************
Problem: 1010
User: idy002
Language: C++
Result: Accepted
Time:116 ms
Memory:3148 kb
****************************************************************/ #include <cstdio>
#define ln(A,B) ((B)-(A))
#define maxn 50010 typedef long long lng; struct Vector {
lng x, y;
int id;
Vector(){}
Vector( lng x, lng y, int id ) : x(x), y(y), id(id) {}
Vector operator-( const Vector & b ) const {
return Vector( x-b.x, y-b.y, - );
}
lng operator&( const Vector & b ) const {
return x*b.y-y*b.x;
}
};
typedef Vector Point; int n, L;
int cost[maxn];
lng g[maxn], sum[maxn];
lng dp[maxn];
int beg, end;
Point qu[maxn]; inline lng sqr( lng a ) {
return a*a;
}
int main() {
scanf( "%d%d", &n, &L );
sum[] = ;
for( int i=; i<=n; i++ ) {
scanf( "%d", cost+i );
sum[i] = sum[i-]+cost[i];
g[i] = sum[i]+i;
}
dp[] = ;
qu[beg=end=] = Point( , , );
for( int i=; i<=n; i++ ) {
while( beg<end && (qu[beg+].y-qu[beg].y)<=(qu[beg+].x-qu[beg].x)**g[i] )
beg++;
int j = qu[beg].id; dp[i] = dp[j]+sqr(sum[i]-sum[j]-L+i-j-);
Point npt = Point( g[i], dp[i]+g[i]*g[i]+*g[i]*(L+), i );
while( beg<end && (ln(qu[end-],qu[end])&ln(qu[end-],npt))<= )
end--;
qu[++end] = npt; }
printf( "%lld\n", dp[n] );
}

bzoj 1010 斜率优化DP的更多相关文章

  1. bzoj 1096 斜率优化DP

    首先比较容易的看出来是DP,w[i]为前i个工厂的最小费用,那么w[i]=min(w[j-1]+cost(j,i))+c[i],但是这样是不work的,复杂度上明显过不去,这样我们考虑优化DP. 设A ...

  2. bzoj 3437 斜率优化DP

    写题解之前首先要感谢妹子. 比较容易的斜率DP,设sum[i]=Σb[j],sum_[i]=Σb[j]*j,w[i]为第i个建立,前i个的代价. 那么就可以转移了. /**************** ...

  3. bzoj 1942 斜率优化DP

    首先我们贪心的考虑,对于某一天来说,我们只有3中策略,第一种为不做任何行动,这时的答案与前一天相同,第二种为将自己的钱全部换成a,b货币,因为如果换a,b货币,代表在之后的某一天卖出去后会赚钱,那么当 ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  5. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  6. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  7. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  8. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  9. 【BZOJ】1911: [Apio2010]特别行动队(斜率优化dp)

    题目 传送门:QWQ 分析 用$ dp[i] $ 表示前 i 个人组成的战斗力之和 然后显然$ dp[i]=Max (  dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum ...

随机推荐

  1. Dull Chocolates Gym - 101991D 离散化 前缀和

    题目链接:https://vjudge.net/problem/Gym-101991D 具体思路:首先看数据范围,暴力肯定不可以,可以下离散化,然后先求出离散化后每一个点到(1,1)的符合题目的要求的 ...

  2. python简单爬虫(二)

    上一篇简单的实现了获取url返回的内容,在这一篇就要第返回的内容进行提取,并将结果保存到html中. 一 . 需求: 抓取主页面:百度百科Python词条   https://baike.baidu. ...

  3. flask插件系列之flask_session会话机制

    flask_session是flask框架实现session功能的一个插件,用来替代flask自带的session实现机制. 配置参数详解 SESSION_COOKIE_NAME 设置返回给客户端的c ...

  4. tomcat+java的web程序持续占cpu高问题调试【转】

    转自 tomcat+java的web程序持续占cpu问题调试 - 像风一样的自由 - CSDN博客http://blog.csdn.net/five3/article/details/28416771 ...

  5. 设计模式之笔记--外观模式(Facade)

    外观模式(Facade) 定义 外观模式(Facade),为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 类图 描述 Facade:外观类,外观 ...

  6. mysql cursor游标的使用,实例

    mysql被oracle收购后,从mysql-5.5开始,将InnoDB作为默认存储引擎,是一次比较重大的突破.InnoDB作为支持事务的存储引擎,拥有相关的RDBMS特性:包括ACID事务支持,数据 ...

  7. leetcode 之trap water(8)

    这题不太好想.可以先扫描找到最高的柱子,然后分别处理两边:记录下当前的局部最高点,如果当前点小于局部最高点,加上, 反则,替换当前点为局部最高点. int trapWater(int A[], int ...

  8. Java显式锁学习总结之三:AbstractQueuedSynchronizer的实现原理

    概述 上一篇我们讲了AQS的使用,这一篇讲AQS的内部实现原理. 我们前面介绍了,AQS使用一个int变量state表示同步状态,使用一个隐式的FIFO同步队列(隐式队列就是并没有声明这样一个队列,只 ...

  9. 获取ios设备系统信息的方法 之 [UIDevice currentDevice]

    获取iphone的系统信息使用[UIDevice currentDevice],信息如下: [[UIDevice currentDevice] systemName]:系统名称,如iPhone OS ...

  10. 三 Python解释器

    当我们编写Python代码时,我们得到的是一个包含Python代码的以.py为扩展名的文本文件.要运行代码,就需要Python解释器去执行.py文件. 由于整个Python语言从规范到解释器都是开源的 ...