[POJ2749]Building roads(2-SAT)
Building roads
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.Clever John just had another good idea. He first builds two
transferring point S1 and S2, and then builds a road connecting S1 and
S2 and N roads connecting each barn with S1 or S2, namely every barn
will connect with S1 or S2, but not both. So that every pair of barns
will be connected by the roads. To make the cows don't spend too much
time while dropping around, John wants to minimize the maximum of
distances between every pair of barns.That's not the whole story because there is another troublesome
problem. The cows of some barns hate each other, and John can't connect
their barns to the same transferring point. The cows of some barns are
friends with each other, and John must connect their barns to the same
transferring point. What a headache! Now John turns to you for help.
Your task is to find a feasible optimal road-building scheme to make the
maximum of distances between every pair of barns as short as possible,
which means that you must decide which transferring point each barn
should connect to.We have known the coordinates of S1, S2 and the N barns, the pairs
of barns in which the cows hate each other, and the pairs of barns in
which the cows are friends with each other.Note that John always builds roads vertically and horizontally, so
the length of road between two places is their Manhattan distance. For
example, saying two points with coordinates (x1, y1) and (x2, y2), the
Manhattan distance between them is |x1 - x2| + |y1 - y2|.Input
The
first line of input consists of 3 integers N, A and B (2 <= N <=
500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number
of barns, the number of pairs of barns in which the cows hate each other
and the number of pairs of barns in which the cows are friends with
each other.Next line contains 4 integer sx1, sy1, sx2, sy2, which are the
coordinates of two different transferring point S1 and S2 respectively.Each of the following N line contains two integer x and y. They are
coordinates of the barns from the first barn to the last one.Each of the following A lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows hate each other.The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows are friends with each other. The same pair of barns never
appears more than once.You should note that all the coordinates are in the range [-1000000, 1000000].
Output
You
just need output a line containing a single integer, which represents
the maximum of the distances between every pair of barns, if John
selects the optimal road-building scheme. Note if there is no feasible
solution, just output -1.Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3Sample Output
53246Source
POJ Monthly--2006.01.22,zhucheng
考虑二分答案,然后根据题目给出的限制以及这个二分出来的距离限制建图,2-SAT解决。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(a) memset(a,0,sizeof(a))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,M=N*N*;
int a,b,n,mx,ans,cnt,scc,top,L,R,tim,dis,x1,y1,x2,y2,x,y,dis1[N],dis2[N],ax[N],ay[N],bx[N],by[N];
int to[M],nxt[M],q[N],dfn[N],inq[N],h[N],low[N],bel[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void init(){ cnt=top=scc=tim=; mem(h); mem(dfn); mem(inq); } int cal(int x1,int y1,int x2,int y2){ return abs(x2-x1)+abs(y2-y1); } void tarjan(int x){
dfn[x]=low[x]=++tim; inq[x]=; q[++top]=x;
For(i,x) if (!dfn[k=to[i]]) tarjan(k),low[x]=min(low[x],low[k]);
else if (inq[k]) low[x]=min(low[x],dfn[k]);
if (dfn[x]==low[x]){
scc++; int t;
do { t=q[top--]; bel[t]=scc; inq[t]=; }while(t!=x);
}
} bool jud(int mid){
init();
rep(i,,n) rep(j,i+,n){
if (dis1[i]+dis1[j]>mid) add(i,n+j),add(j,n+i);
if (dis2[i]+dis2[j]>mid) add(i+n,j),add(j+n,i);
if (dis1[i]+dis2[j]+dis>mid) add(i,j),add(j+n,i+n);
if (dis2[i]+dis1[j]+dis>mid) add(i+n,j+n),add(j,i);
}
rep(i,,a) add(ax[i],ay[i]+n),add(ay[i]+n,ax[i]),add(ay[i],ax[i]+n),add(ax[i]+n,ay[i]);
rep(i,,b) add(bx[i],by[i]),add(by[i],bx[i]),add(bx[i]+n,by[i]+n),add(by[i]+n,bx[i]+n);
rep(i,,*n) if (!dfn[i]) tarjan(i);
rep(i,,n) if (bel[i]==bel[i+n]) return ;
return ;
} int main(){
freopen("poj2749.in","r",stdin);
freopen("poj2749.out","w",stdout);
while (~scanf("%d%d%d",&n,&a,&b)){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
dis=cal(x1,y1,x2,y2); mx=;
rep(i,,n){
scanf("%d%d",&x,&y);
dis1[i]=cal(x,y,x1,y1); dis2[i]=cal(x,y,x2,y2);
mx=max(mx,max(dis1[i],dis2[i]));
}
mx=mx*+dis;
rep(i,,a) scanf("%d%d",&ax[i],&ay[i]);
rep(i,,b) scanf("%d%d",&bx[i],&by[i]);
int L=,R=mx; ans=-;
while (L<=R){
int mid=(L+R)>>;
if (jud(mid)) ans=mid,R=mid-; else L=mid+;
}
printf("%d\n",ans);
}
return ;
}
[POJ2749]Building roads(2-SAT)的更多相关文章
- POJ2749 Building roads
嘟嘟嘟 最近把21天漏的给不上. 今天重温了一下2-SAT,感觉很简单.就是把所有条件都转化成如果--必然能导出--.然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假.从而根据这个点拆 ...
- POJ2749 Building roads 【2-sat】
题目 Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
随机推荐
- 【洛谷 P2512】 [HAOI2008]糖果传递(贪心)
题目链接 环形均分纸牌. 设平均数为\(ave\),\(g[i]=a[i]-ave\),\(s[i]=\sum_{j=1}^ig[i]\). 设\(s\)的中位数为\(s[k]\),则答案为\(\su ...
- python并发编程之threading线程(一)
进程是系统进行资源分配最小单元,线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.进程在执行过程中拥有独立的内存单元,而多个线程共享内存等资源. 系列文章 py ...
- MongoDB之python简单交互(三)
python连接mongodb有多种orm,主流的有pymongo和mongoengine. pymongo 安装相关模块 pip install pymongo pymongo操作 主要对象 Mon ...
- linux下C语言实现多线程通信—环形缓冲区,可用于生产者(producer)/消费者(consumer)【转】
转自:http://blog.chinaunix.net/uid-28458801-id-4262445.html 操作系统:ubuntu10.04 前言: 在嵌入式开发中,只要是带操作系统的 ...
- openjudge-NOI 2.6-2988 计算字符串距离
题目链接:http://noi.openjudge.cn/ch0206/2988/ 题解: 首先,题目有误,少了一个添加操作 和求解LCS之类的思路类似 f[i][j]表示a序列中1..i的部分和b序 ...
- WPF拖动DataGrid滚动条时内容混乱的解决方法
WPF拖动DataGrid滚动条时内容混乱的解决方法 在WPF中,如果DataGrid里使用了模板列,当拖动滚动条时,往往会出现列表内容显示混乱的情况.解决方法就是在Binding的时候给Update ...
- 大型网站的 HTTPS 实践(一)—— HTTPS 协议和原理(转)
原文链接:http://op.baidu.com/2015/04/https-s01a01/ 1 前言 百度已经于近日上线了全站 HTTPS 的安全搜索,默认会将 HTTP 请求跳转成 HTTPS.本 ...
- Eloquent中一些其他的create方法
firstOrCreate/ firstOrNew# 还有两种其它方法,你可以用来通过属性批量赋值创建你的模型:firstOrCreate 和firstOrNew.firstOrCreate 方法将会 ...
- linux 端口设置结构体 struc
目录(?)[-] 一 输入模式 三输出模式 四控制模式 六特殊的控制字符 字符 TIME和MIN值 通过shell访问终端模式 终端速度 其他函数 使用termios结构的密码程序 termi ...
- HDU 17111 Number Sequence(KMP裸题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711 题目大意:给你两个数字数组a和b,若b是a的子序列则输出b在a中第一次出现的位置,否则输出-1. ...