[POJ2749]Building roads(2-SAT)
Building roads
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.Clever John just had another good idea. He first builds two
transferring point S1 and S2, and then builds a road connecting S1 and
S2 and N roads connecting each barn with S1 or S2, namely every barn
will connect with S1 or S2, but not both. So that every pair of barns
will be connected by the roads. To make the cows don't spend too much
time while dropping around, John wants to minimize the maximum of
distances between every pair of barns.That's not the whole story because there is another troublesome
problem. The cows of some barns hate each other, and John can't connect
their barns to the same transferring point. The cows of some barns are
friends with each other, and John must connect their barns to the same
transferring point. What a headache! Now John turns to you for help.
Your task is to find a feasible optimal road-building scheme to make the
maximum of distances between every pair of barns as short as possible,
which means that you must decide which transferring point each barn
should connect to.We have known the coordinates of S1, S2 and the N barns, the pairs
of barns in which the cows hate each other, and the pairs of barns in
which the cows are friends with each other.Note that John always builds roads vertically and horizontally, so
the length of road between two places is their Manhattan distance. For
example, saying two points with coordinates (x1, y1) and (x2, y2), the
Manhattan distance between them is |x1 - x2| + |y1 - y2|.Input
The
first line of input consists of 3 integers N, A and B (2 <= N <=
500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number
of barns, the number of pairs of barns in which the cows hate each other
and the number of pairs of barns in which the cows are friends with
each other.Next line contains 4 integer sx1, sy1, sx2, sy2, which are the
coordinates of two different transferring point S1 and S2 respectively.Each of the following N line contains two integer x and y. They are
coordinates of the barns from the first barn to the last one.Each of the following A lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows hate each other.The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows are friends with each other. The same pair of barns never
appears more than once.You should note that all the coordinates are in the range [-1000000, 1000000].
Output
You
just need output a line containing a single integer, which represents
the maximum of the distances between every pair of barns, if John
selects the optimal road-building scheme. Note if there is no feasible
solution, just output -1.Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3Sample Output
53246Source
POJ Monthly--2006.01.22,zhucheng
考虑二分答案,然后根据题目给出的限制以及这个二分出来的距离限制建图,2-SAT解决。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(a) memset(a,0,sizeof(a))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,M=N*N*;
int a,b,n,mx,ans,cnt,scc,top,L,R,tim,dis,x1,y1,x2,y2,x,y,dis1[N],dis2[N],ax[N],ay[N],bx[N],by[N];
int to[M],nxt[M],q[N],dfn[N],inq[N],h[N],low[N],bel[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void init(){ cnt=top=scc=tim=; mem(h); mem(dfn); mem(inq); } int cal(int x1,int y1,int x2,int y2){ return abs(x2-x1)+abs(y2-y1); } void tarjan(int x){
dfn[x]=low[x]=++tim; inq[x]=; q[++top]=x;
For(i,x) if (!dfn[k=to[i]]) tarjan(k),low[x]=min(low[x],low[k]);
else if (inq[k]) low[x]=min(low[x],dfn[k]);
if (dfn[x]==low[x]){
scc++; int t;
do { t=q[top--]; bel[t]=scc; inq[t]=; }while(t!=x);
}
} bool jud(int mid){
init();
rep(i,,n) rep(j,i+,n){
if (dis1[i]+dis1[j]>mid) add(i,n+j),add(j,n+i);
if (dis2[i]+dis2[j]>mid) add(i+n,j),add(j+n,i);
if (dis1[i]+dis2[j]+dis>mid) add(i,j),add(j+n,i+n);
if (dis2[i]+dis1[j]+dis>mid) add(i+n,j+n),add(j,i);
}
rep(i,,a) add(ax[i],ay[i]+n),add(ay[i]+n,ax[i]),add(ay[i],ax[i]+n),add(ax[i]+n,ay[i]);
rep(i,,b) add(bx[i],by[i]),add(by[i],bx[i]),add(bx[i]+n,by[i]+n),add(by[i]+n,bx[i]+n);
rep(i,,*n) if (!dfn[i]) tarjan(i);
rep(i,,n) if (bel[i]==bel[i+n]) return ;
return ;
} int main(){
freopen("poj2749.in","r",stdin);
freopen("poj2749.out","w",stdout);
while (~scanf("%d%d%d",&n,&a,&b)){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
dis=cal(x1,y1,x2,y2); mx=;
rep(i,,n){
scanf("%d%d",&x,&y);
dis1[i]=cal(x,y,x1,y1); dis2[i]=cal(x,y,x2,y2);
mx=max(mx,max(dis1[i],dis2[i]));
}
mx=mx*+dis;
rep(i,,a) scanf("%d%d",&ax[i],&ay[i]);
rep(i,,b) scanf("%d%d",&bx[i],&by[i]);
int L=,R=mx; ans=-;
while (L<=R){
int mid=(L+R)>>;
if (jud(mid)) ans=mid,R=mid-; else L=mid+;
}
printf("%d\n",ans);
}
return ;
}
[POJ2749]Building roads(2-SAT)的更多相关文章
- POJ2749 Building roads
嘟嘟嘟 最近把21天漏的给不上. 今天重温了一下2-SAT,感觉很简单.就是把所有条件都转化成如果--必然能导出--.然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假.从而根据这个点拆 ...
- POJ2749 Building roads 【2-sat】
题目 Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
随机推荐
- C++ Boost库 uBLAS 笔记
构造 Vector #include <boost/numeric/ublas/vector.hpp> #include <boost/numeric/ublas/io.hpp> ...
- .net APIHelper client获取数据
using Newtonsoft.Json; using System.Net.Http.Headers; public static class APIHepler { public static ...
- JS设计模式——4.继承(概念)
类式继承 0.构造函数 一个简单的Person类 function Person(name){ this.name = name; } Person.prototype.getName = funct ...
- htmlunit爬虫工具使用--模拟浏览器发送请求,获取JS动态生成的页面内容
Htmlunit是一款模拟浏览抓取页面内容的java框架,具有js解析引擎(rhino),可以解析页面的js脚本,得到完整的页面内容,特殊适合于这种非完整页面的站点抓取. 下载地址: https:// ...
- inet_addr_onlink
/* 根据指定设备的ip配置块,判断地址a,b是否在同一子网 */ /* --邻居项要求,在同一子网中的两个设备, 至少有一个接口有相同的子网配置, --也就是说对端的in_dev->ifa_l ...
- SQLite3 使用教学
source: SQL中文站:http://www.sqlite.com.cn/MySqlite/4/378.Html OS X自从10.4后把SQLite这套相当出名的数据库软件,放进了作业系统工具 ...
- 自动化运维工具SaltStack详细部署【转】
==========================================================================================一.基础介绍==== ...
- .NET 处理视频-MediaInfo 获取视频信息
获取视频信息的组件很多,本节介绍的是:MediaFile. 第一步.添加 MediaInfoDotNet 在项目上右键,选择“管理 NuGet 程序包”,浏览以选中 MediaInfoDotNet,然 ...
- 62.Unique Paths---dp
题目链接 题目大意:给一个m*n的方格,从左上角走到右下角,中间无任何障碍,问有多少种走法. 法一:DFS,超时,简单模板深搜,无任何剪枝,结果一半的数据超时.代码如下: public int uni ...
- 016 sleep,wait,yield,join区别
1.线程通常有五种状态,创建,就绪,运行.阻塞和死亡状态.2.阻塞的情况又分为三种:(1).等待阻塞:运行的线程执行wait()方法,该线程会释放占用的所有资源,JVM会把该线程放入“等待池”中.进入 ...